最近在研究TensorFlow Lite ,发现Google 还真是区别对待呀。安卓亲儿子什么都要完善一些,不光是文档清晰详细,连demo也是更加完整。像iOS这端的多人姿势预测就没有写demo,因此只能靠自己一点一点摸索。自己也是好一阵捣鼓终于完成了多人姿势预测
1.首先我们需要多人姿势估计的模型
模型可以去TensorFlow的官网上下载,多人姿势模型如图我们得选择TFLite这个模块
2.解读模型要求
inputs:
视频或图像的帧,表示为动态形状的int32(对于TF.js)或uint8(对于TF Lite)shape:1xHxWx3,其中H和W需要是32的倍数,可以在运行时确定。通道顺序为RGB,值为[0,255](注意:输入图像的大小控制着速度与精度之间的权衡,因此请选择最适合您的应用程序的值)
outputs:
返回float32类型的[1,6,56]
其中第一个参数是固定值不用管
第二个是可以检测到的最大数量 为6。
第三个表示预测的边界框/关键点位置和分数,其中17 * 3(51个数据)表示17个关键点 第一个是X坐标,第二个是Y坐标,第三个是置信分数---[y_0, x_0, s_0, y_1, x_1, s_1, …, y_16, x_16, s_16]对应[鼻子、左眼、右眼、左耳、右耳、左肩、右肩、左肘、右肘、左腕、右腕、左髋、右髋、左膝、右膝、左踝、右踝]。剩下的5个---[ymin、xmin、ymax、xmax、score]表示边界框的区域和总的置信分数
3.部分关键代码
解释器的创建和输入输出的创建
// 创建文件路径
guard let modelPath = Bundle.main.path(
forResource: fileInfo.name,
ofType: "tflite")// 格式一定要tflite,如果不是说明模块下载错误
else {
// 失败处理
}
// 解释器的自定义 (也可以省略)
var options = Interpreter.Options()
options.threadCount = 4
// 创建解释器 interpreter 需要设置为全局 var interpreter: Interpreter
interpreter = try Interpreter(modelPath: modelPath, options: options, delegates: delegates)
// [1xHxWx3] H和W需要是32的倍数 根据需求调整越大越精准
try interpreter.resizeInput(at: 0, to: Tensor.Shape.init([1,256,256,3]))
try interpreter.allocateTensors()
inputTensor = try interpreter.input(at: 0)
try interpreter.invoke()
outputTensor = try interpreter.output(at: 0)
数据结构
import UIKit
// 性能检测
struct Times {
var preprocessing: TimeInterval
var inference: TimeInterval
var postprocessing: TimeInterval
var total: TimeInterval { preprocessing + inference + postprocessing }
}
/// 身体的关键点
enum BodyPart: String, CaseIterable {
case nose = "nose"
case leftEye = "left eye"
case rightEye = "right eye"
case leftEar = "left ear"
case rightEar = "right ear"
case leftShoulder = "left shoulder"
case rightShoulder = "right shoulder"
case leftElbow = "left elbow"
case rightElbow = "right elbow"
case leftWrist = "left wrist"
case rightWrist = "right wrist"
case leftHip = "left hip"
case rightHip = "right hip"
case leftKnee = "left knee"
case rightKnee = "right knee"
case leftAnkle = "left ankle"
case rightAnkle = "right ankle"
var position: Int {
return BodyPart.allCases.firstIndex(of: self) ?? 0
}
}
struct KeyPoint {
var bodyPart: BodyPart = .nose
var coordinate: CGPoint = .zero
/// 置信分数
var score: Float32 = 0.0
}
struct Person {
var keyPoints: [KeyPoint]
/// 总置信分数
var score: Float32
}
对相机捕捉到的像素缓存进行处理输出Data
private func multiPreprocess(_ pixelBuffer: CVPixelBuffer) -> Data?{
let sourcePixelFormat = CVPixelBufferGetPixelFormatType(pixelBuffer)
assert(
sourcePixelFormat == kCVPixelFormatType_32BGRA
|| sourcePixelFormat == kCVPixelFormatType_32ARGB)
// 如果一开始没有resize shape这个地方输出的将是[1x1x1x3]
let dimensions = inputTensor.shape.dimensions
let inputWidth = CGFloat(dimensions[1])// 32的倍数才行
let inputHeight = CGFloat(dimensions[2])// 32的倍数才行
let imageWidth = CGFloat(Int(pixelBuffer.size.width/32) * 32)
let imageHeight = CGFloat(Int(pixelBuffer.size.height/32) * 32)
let cropRegion = self.cropRegion ??
initialCropRegion(imageWidth: imageWidth, imageHeight: imageHeight)
self.cropRegion = cropRegion
let rectF = RectF(
left: cropRegion.left * imageWidth,
top: cropRegion.top * imageHeight,
right: cropRegion.right * imageWidth,
bottom: cropRegion.bottom * imageHeight)
// Detect region
let modelSize = CGSize(width: inputWidth, height: inputHeight)
// 处理图像数据可以用TensorFlow example中的方法
guard let thumbnail = pixelBuffer.cropAndResize(fromRect: rectF.rect, toSize: modelSize) else {
return nil
}
// Remove the alpha component from the image buffer to get the initialized `Data`.
guard
let inputData = thumbnail.rgbData(
isModelQuantized: inputTensor.dataType == .uInt8, imageMean: imageMean, imageStd: imageStd)
else {
os_log("Failed to convert the image buffer to RGB data.", type: .error)
return nil
}
return inputData
}
输出模型
private func postMultiprocess(imageSize: CGSize, modelOutput: Tensor) -> [Person]?{
// 长宽处理成32的倍数
let imageWidth = CGFloat(Int(imageSize.width/32) * 32)
let imageHeight = CGFloat(Int(imageSize.height/32) * 32)
let cropRegion = self.cropRegion ??
initialCropRegion(imageWidth: imageWidth, imageHeight: imageHeight)
let minX: CGFloat = cropRegion.left * imageWidth
let minY: CGFloat = cropRegion.top * imageHeight
var output = modelOutput.data.toArray(type: Float32.self)
var dataArr = Array<Array<Float32>>()
let dimensions = modelOutput.shape.dimensions
let numKeyPoints = dimensions[2]
while output.count > 0 {
var tempArr = [Float32]()
for (indexNum, obj) in output.enumerated() {
if indexNum < numKeyPoints{
tempArr.append(obj)
output.remove(at: 0)
}
}
dataArr.append(tempArr)
}
// 批处理维度,它总是等于1
_ = CGFloat(modelOutput.shape.dimensions[1])
// 实例检测的最大数量(6)
_ = CGFloat(modelOutput.shape.dimensions[2])
let inputWidth = CGFloat(inputTensor.shape.dimensions[1])
let inputHeight = CGFloat(inputTensor.shape.dimensions[2])
let widthRatio = (cropRegion.width * imageWidth / inputWidth)
let heightRatio = (cropRegion.height * imageHeight / inputHeight)
// Translate the coordinates from the model output's [0..1] back to that of
// the input image
var personArr = [Person]()
for arr in dataArr {
var keyPoints: [KeyPoint] = []
for idx in 0...16{
let x = ((CGFloat(arr[idx * 3 + 1]) * inputWidth) * widthRatio) + minX
let y = ((CGFloat(arr[idx * 3 + 0]) * inputHeight) * heightRatio) + minY
let score = arr[idx * 3 + 2]
let keyPoint = KeyPoint(
bodyPart: BodyPart.allCases[idx], coordinate: CGPoint(x: x, y: y), score: score)
keyPoints.append(keyPoint)
}
let totalScore = arr[numKeyPoints - 1]
personArr.append(Person(keyPoints: keyPoints, score: totalScore))
}
return personArr
}
多人姿势估计
func estimateMultiPose(on pixelBuffer: CVPixelBuffer) throws -> ([Person], Times) {
guard !isProcessing else {
throw PoseEstimationError.modelBusy
}
isProcessing = true
defer {
isProcessing = false
}
// 每次肢体检测的开始时间
let preprocessingStartTime: Date
let inferenceStartTime: Date
let postprocessingStartTime: Date
// 过程的时间
let preprocessingTime: TimeInterval
let inferenceTime: TimeInterval
let postprocessingTime: TimeInterval
preprocessingStartTime = Date()
guard let data = multiPreprocess(pixelBuffer) else {
throw PoseEstimationError.preprocessingFailed
}
preprocessingTime = Date().timeIntervalSince(preprocessingStartTime)
inferenceStartTime = Date()
do {
// 将数据拷贝进解释器
try interpreter.copy(data, toInputAt: 0)
try interpreter.invoke()
outputTensor = try interpreter.output(at: 0)
} catch {
throw PoseEstimationError.inferenceFailed
}
inferenceTime = Date().timeIntervalSince(inferenceStartTime)
postprocessingStartTime = Date()
guard let resultArr = postMultiprocess(imageSize: pixelBuffer.size, modelOutput: outputTensor) else {
throw PoseEstimationError.postProcessingFailed
}
postprocessingTime = Date().timeIntervalSince(postprocessingStartTime)
let times = Times(
preprocessing: preprocessingTime,
inference: inferenceTime,
postprocessing: postprocessingTime)
return (resultArr, times)
}
到此整个处理的流程就结束了,CVPixelBuffer可以通过相机捕获
func captureOutput(
_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection
)
也可以自己找图片转换(CGImage转换成CVPixelBuffer)。反正很灵活,想怎么玩都行