数学定理

送给自己

无论如何,不许退缩,不许不努力,绝不许放弃。我们不会被困难打到,要咬牙含着泪也要坚持到最后一刻。

微积分和梯度

两边夹定理

极限定理

极限存在定理

单调有界数列必有极限
单增数列有上界,则其必有极限

构造数列

自然常数e

导数

导数与微分的区别

导数是函数图像在某一点处的斜率,也就是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。

导数是函数图像在某一点处的斜率,也就是纵坐标变化率和横坐标变化率的比值。微分是指函数图像在某一点处的切线在横坐标取得Δx以后,纵坐标取得的增量。

常用导数

积分公式

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

分部积分法

积分与求导互为逆运算

方向导数


梯度

凸函数

凸函数是数学函数的一类特征。凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

可微函数

在微积分学中,可微函数是指那些在定义域中所有点都存在导数的函数。可微函数的图像在定义域内的每一点上必存在非垂直切线。因此,可微函数的图像是相对光滑的,没有间断点、尖点或任何有垂直切线的点。
一般来说,若X是函数ƒ定义域上的一点,且ƒ′(X)有定义,则称ƒ在X点可微。这就是说ƒ的图像在(X, ƒ(X))点有非垂直切线,且该点不是间断点、尖点。

一阶可微

二阶可微

凸函数举例

Jensen不等式:若f是凸函数

1.jpg

Taylor展式与拟牛顿

Taylor公式 – Maclaurin公式

梯度下降算法

Taylor展式

牛顿法

牛顿法的特点
  1. 牛顿法具有二阶收敛性,在某些目标函数(如线性回归、Logistic回归等)的问题中,它的收敛速度比梯度下降要快。
  2. 经典牛顿法虽然具有二次收敛性,但是要求初始点需要尽量靠近极小点,否则有可能不收敛。
  • 如果Hessian矩阵奇异,牛顿方向可能根本不存在。
  • 若Hessian矩阵不是正定,则牛顿方向有可能是反方向。
  1. 计算过程中需要计算目标函数的二阶偏导数的逆,时间复杂度较大。
拟牛顿的思路

求Hessian矩阵的逆影响算法效率,同时,搜索方向并非严格需要负梯度方向或牛顿方向;因此,可以用近似矩阵代替Hessian矩阵,只要满足该矩阵正定、容易求逆,或者可以通过若干步递推公式计算得到。

  • DFP:Davidon – Fletcher – Powell
  • BFGS:Broyden – Fletcher – Goldfarb - Shanno

二阶近似

DFP算法

BFGS矩阵迭代公式

L-BFGS

  • BFGS需要存储n×n的方阵Ck用于近似Hessian阵的逆矩阵;而L-BFGS仅需要存储最近m(m约为10,m=20足够)个 用于近似Ck即可。
  • L-BFGS的空间复杂度O(mn),若将m看做常数则为线性,适用于特征巨大的优化问题。
小结
1. Taylor展式是数学分析中的重要工具,在近似计算、迭代公式推导等众多方面有重要作用。
2. 梯度下降算法还涉及到下降方向的修正、自适应学习率等问题。
3. Gini系数是CART的结点划分依据,实践中往往使用“与均匀分布的距离”作为度量。
     -这两部分将在机器学习课程的回归、决策树、随机森林等章节中进一步阐述。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容