作业完成情况——自然语言处理

参与人员:

  1. 余艾锶、2. 程会林、3. 黄莉婷、4. 梁清源、5. 曾伟、6. 陈南浩

完成检查:博客(读书笔记)、课后习题答案、代码、回答问题

《Text Mining and Analytics》(12.13)
https://www.coursera.org/learn/text-mining

Week1:

Guiding Questions

Develop your answers to the following guiding questions while watching the video lectures throughout the week.

  1. What does a computer have to do in order to understand a natural language sentence?
  2. What is ambiguity?
  3. Why is natural language processing (NLP) difficult for computers?
  4. What is bag-of-words representation?
  5. Why is this word-based representation more robust than representations derived from syntactic and semantic analysis of text?
  6. What is a paradigmatic relation?
  7. What is a syntagmatic relation?
  8. What is the general idea for discovering paradigmatic relations from text?
  9. What is the general idea for discovering syntagmatic relations from text?
  10. Why do we want to do Term Frequency Transformation when computing similarity of context?
  11. How does BM25 Term Frequency transformation work?
  12. Why do we want to do Inverse Document Frequency (IDF) weighting when computing similarity of context?

未完成:

已完成:

黄莉婷
http://blog.csdn.net/weixin_40962955/article/details/78828721
梁清源
http://blog.csdn.net/qq_33414271/article/details/78802272
http://www.jianshu.com/u/337e85e2a284
曾伟
http://www.jianshu.com/p/9e520d5ccdaa
程会林
http://blog.csdn.net/qq_35159009/article/details/78836340
余艾锶
http://blog.csdn.net/xy773545778/article/details/78829053
陈南浩
http://blog.csdn.net/DranGoo/article/details/78850788

Week2:

Guiding Questions
Develop your answers to the following guiding questions while watching the video lectures throughout the week.

  1. What is entropy? For what kind of random variables does the entropy function reach its minimum and maximum, respectively? 1
  2. What is conditional entropy? 2
  3. What is the relation between conditional entropy H(X|Y) and entropy H(X)? Which is larger? 3
  4. How can conditional entropy be used for discovering syntagmatic relations? 4
  5. What is mutual information I(X;Y)? How is it related to entropy H(X) and conditional entropy H(X|Y)? 5
  6. What’s the minimum value of I(X;Y)? Is it symmetric? 6
  7. For what kind of X and Y, does mutual information I(X;Y) reach its minimum? For a given X, for what Y does I(X;Y) reach its maximum? 1
  8. Why is mutual information sometimes more useful for discovering syntagmatic relations than conditional entropy?
    What is a topic? 2
  9. How can we define the task of topic mining and analysis computationally? What’s the input? What’s the output? 3
  10. How can we heuristically solve the problem of topic mining and analysis by treating a term as a topic? What are the main problems of such an approach? 4
  11. What are the benefits of representing a topic by a word distribution? 5
  12. What is a statistical language model? What is a unigram language model? How can we compute the probability of a sequence of words given a unigram language model? 6
  13. What is Maximum Likelihood estimate of a unigram language model given a text article? 1
  14. What is the basic idea of Bayesian estimation? What is a prior distribution? What is a posterior distribution? How are they related with each other? What is Bayes rule? 2

未完成:陈南浩

已完成:
梁清源
http://blog.csdn.net/qq_33414271/article/details/78871154
程会林
https://www.jianshu.com/p/61614d406b0f
黄莉婷
http://blog.csdn.net/weixin_40962955/article/details/78877103
余艾锶
http://blog.csdn.net/xy773545778/article/details/78848613
曾伟
http://blog.csdn.net/qq_39759159/article/details/78882651

Week3:

Guiding Questions
Develop your answers to the following guiding questions while watching the video lectures throughout the week.

  1. What is a mixture model? In general, how do you compute the probability of observing a particular word from a mixture model? What is the general form of the expression for this probability? 3
  2. What does the maximum likelihood estimate of the component word distributions of a mixture model behave like? In what sense do they “collaborate” and/or “compete”? 4
  3. Why can we use a fixed background word distribution to force a discovered topic word distribution to reduce its probability on the common (often non-content) words? 5
  4. What is the basic idea of the EM algorithm? What does the E-step typically do? What does the M-step typically do? In which of the two steps do we typically apply the Bayes rule? Does EM converge to a global maximum? 6
  5. What is PLSA? How many parameters does a PLSA model have? How is this number affected by the size of our data set to be mined? How can we adjust the standard PLSA to incorporate a prior on a topic word distribution? 1
  6. How is LDA different from PLSA? What is shared by the two models? 2

未完成:余艾锶
已完成:
程会林:公式归一化为什么不同?
https://www.jianshu.com/p/bcef1ad7a530?utm_campaign=haruki&utm_content=note&utm_medium=reader_share&utm_source=qq
曾伟
http://www.cnblogs.com/Negan-ZW/p/8179076.html
梁清源
http://blog.csdn.net/qq_33414271/article/details/78938301
黄莉婷 LDA 的原理
http://blog.csdn.net/weixin_40962955/article/details/78941383#t10
陈南浩
http://blog.csdn.net/DranGoo/article/details/78968749

Week4:

Guiding Questions
Develop your answers to the following guiding questions while watching the video lectures throughout the week.

  1. What is clustering? What are some applications of clustering in text mining and analysis? 3
  2. How can we use a mixture model to do document clustering? How many parameters are there in such a model? 4
  3. How is the mixture model for document clustering related to a topic model such as PLSA? In what way are they similar? Where are they different? 5
  4. How do we determine the cluster for each document after estimating all the parameters of a mixture model? 6
  5. How does hierarchical agglomerative clustering work? How do single-link, complete-link, and average-link work for computing group similarity? Which of these three ways of computing group similarity is least sensitive to outliers in the data? 1
  6. How do we evaluate clustering results? 2
  7. What is text categorization? What are some applications of text categorization? 3
  8. What does the training data for categorization look like?
  9. How does the Naïve Bayes classifier work? 4
  10. Why do we often use logarithm in the scoring function for Naïve Bayes? 5

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week5:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week6:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

《Text Retrieval and Search Engines》(12.13)

https://www.coursera.org/learn/text-retrieval

Week1:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week2:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week3:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week4:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week5:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

Week6:

未完成:余艾锶、程会林、黄莉婷、梁清源、曾伟、陈南浩
已完成:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 忙碌里真的不知道过去的几天都发生了什么,一周前,三四天前,前天,昨天都发生了什么,浑然不知了。。。有很久没有写日记...
    捡书时代阅读 144评论 0 0
  • 今天又向客户承诺了,又没有做到,真的想找面墙装进去,不出来了。事情是这样的: 客户下午1:50打电话过来,询问课件...
    王小慧阅读 426评论 0 1
  • 在夜晚的列车上 身体安静地旅行 神经还被白天的情境牵扯 混进来了过去的幸运和不幸 模糊的呈现出好看的七色光 柔软的...
    喜乐心记阅读 182评论 0 2
  • 最近,我可能有些悲观。最近,我看的书都与“死亡”相关。大可不必担心,我没有故作勇敢,也没有熬那虚妄的鸡汤叫你们“要...
    小薇子阅读 391评论 0 0