机器学习---强化学习---目前的坑

当前(2019年)机器学习中有哪些研究方向特别的坑?

微尘强化学习MAB嗑盐ing;nlp/推荐系统预备卒

53 人赞同了该回答

深度强化学习~

1.深度强化学习可能是非常采样低效的(sample inefficient):

强化学习也有其规划谬误,学习一个策略通常需要比想象更多的样本。

在 DeepMind 的跑酷论文(Emergence of Locomotion Behaviours in Rich Environments)的 demo 中,使用了 64 个 worker 在超过一百小时的时间里训练策略。这篇论文并没有阐明 worker 的含义,但是我认为它的意思是一个 worker 意味着 1 个 CPU。

2.如果你仅仅关心最终的性能,那么很多问题都能够通过其他方法更好地解决。

3.稍稍复杂的问题中奖励函数设计困难:

作为参考,以下列出了「乐高堆叠」那篇论文中的奖励函数之一。

我不清楚设计这么一个奖励函数花费了多少时间,但是由于这里存在这么多的项和不同的系数,我猜应该是花费了「大量的」时间。

在与其他强化学习研究者交谈的过程中,我听到了一些因为没有设计合适的奖励函数,而导致奇怪结果的轶事。

4.即使给定了较好的奖励函数,也很难跳出局部最优:

这很可能源于智能体在「探索—利用」权衡过程中犯过的错误。

5.深度强化学习的泛化能力还不足以处理很多样的任务集合:

即使当深度强化学习成功的时候,它也有可能仅仅是过拟合了环境中的某些奇怪的模式。

6.即使忽略了泛化问题,最终的结果也可能是不稳定的和难以复现的

当你训练一个样本低效并且不稳定的算法时,它会严重降低生产性研究的速度。或许它只需要一百万步。但是如果你使用了 5 个随机数种子,那就是将调节的超参数变成了原来的 5 倍,为了有效地测试你的假设,你需要极其多的计算量。

②强化学习对初始化和训练过程的动态变化都很敏感,因为数据总是在线采集到的,你可以执行的唯一监督只有关于奖励的单个标量。在较好的训练样例上随机碰到的策略会比其他策略更快地引导学习。没有及时地遇到好的训练样本的策略会崩溃而学不到任何东西,因为它越来越坚信:它所尝试的任何偏离都会导致失败。

《变革尚未成功:深度强化学习研究的短期悲观与长期乐观》(近一万五千字)阅读笔记~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356

推荐阅读更多精彩内容