2019-02-26

第四讲:常见公式整理


数学符号

\vec{e}_n, \vec{e}_{t}, \frac{x}{y}, v=\sqrt{v_x^2+v_y^2} , \frac{d^2x}{dt^2}

对应的代码为
$\vec{e}_n$, $\vec{e}_{t}$, $\frac{x}{y}$, $v=\sqrt{v_x^2+v_y^2}$ $\frac{d^2x}{dt^2}$


tips:

务必注意一维和高维的公式有哪些异同


知识点

  • 一维运动的位矢

    x=x(t)

  • 一维运动的速度(速率)

    v=\frac{dx}{dt}

  • 一维运动的加速度

    a=\frac{dv}{dt}

    a=\frac{d^2x}{dt^2}​

  • 高维运动的位置

    • 直角坐标系:\vec{r}=x(t)\vec{i}+y(t)\vec{j}​

    • 自然坐标系:s=s(t)

      • tips: 特别适用于列车往返,圆周运动等轨迹确定的运动
  • 高维运动的速度

    • 直角坐标系:\vec{v}=\frac{d\vec{r}}{dt}=\frac{dx(t)}{dt}\vec{i}+\frac{dy(t)}{dt}\vec{j}=v_x\vec{i}+v_y\vec{j}​
    • 自然坐标系:\vec{v}=v(t)\vec{e}_t​
  • 高维运动的速率

    • 直角坐标系:v=|\vec{v}|=|\frac{d\vec{r}}{dt}|=\sqrt{v_x^2+v_y^2}=\sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}​
    • 自然坐标系:v=v(t)=\frac{ds(t)}{dt}​
  • 高维运动的加速度

    • 直角坐标系:\vec{a}=\frac{d\vec{v}}{dt}=\frac{dv_x(t)}{dt}\vec{i}+\frac{dv_y(t)}{dt}\vec{j}=a_x\vec{i}+a_y\vec{j}​
    • 自然坐标系:\vec{a}=\vec{a}_{t}+\vec{a}_{n}=\frac{dv}{dt}\vec{e}_{t}+\frac{v^{2}}{R}\vec{e}_{n}
  • 高维运动的加速度的大小

    • 直角坐标系:a=|\vec{a}|=|\frac{d\vec{v}}{dt}|=\sqrt{a_x^2+a_y^2}=\sqrt{(\frac{dv_x}{dt})^2+(\frac{dv_y}{dt})^2}
    • 自然坐标系:a=\sqrt{a_n^2+a_t^2}=\sqrt{(\frac{v^2}{R})^2+(\frac{dv}{dt})^2}

例题


  • 例1.

一质点在某瞬时的位矢为\vec{r}(x,y),对其速度的大小为

  • (1) \frac{dr}{dt}
  • (2) \frac{d|\vec{r}|}{dt}
  • (3) \frac{ds}{dt}
  • (4) \sqrt{(\frac{dx}{dt})^{2}+(\frac{dy}{dt})^{2}}.

上述判断正确的是

解答:34


  • 例2.

质点作曲线运动,对下列表述中,

  • (1)dv/dt=a​
  • (2)dr/dt=v
  • (3)ds/dt=v
  • (4)|d\vec{v}/dt|=a_{t}
    正确的是(  )

解答:3

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 第三讲:自然坐标系下曲线运动的加速度 —— 以圆周运动为例 数学符号 , , , 对应的代码为$\vec{e}_...
    走不完的旅行阅读 252评论 0 3
  • 前言:在看完上一期《象棋人工智能算法的C++实现(一)》后,是不是对这个项目感到有点小兴奋呢?但是我首先要声明的是...
    代码人生ll阅读 1,313评论 0 1
  • 京东滴滴全面缩招,面对互联网裁员潮的来临,我们该怎么办?从2018年下半年开始,大批公司掀起了一场史无前例的人员优...
    我是糖果儿阅读 200评论 0 0
  • 京东滴滴全面缩招,面对互联网裁员潮的来临,我们该怎么办? 三一金服 从2018年下半年开始,大批公司掀起了一场史无...
    郭丽敬阅读 243评论 0 0
  • 这篇文章最初是看完纪录片《摇滚多多》后的感想。 《摇滚多多》并不是一部多么优秀的纪录片,像其他很多关于摇滚的纪录片...
    老摇滚阅读 594评论 2 9