生成对抗式网络 GAN的理解

转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享

tf源码:http://www.pianshen.com/article/112845069/

       生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。

本文主要分为三个部分:

1. 介绍原始的GAN的原理 

2. 同样非常重要的DCGAN的原理 

3. 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)

一、GAN原理介绍

         说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.org/abs/1406.2661),这篇paper算是这个领域的开山之作。

         GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

1)G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。

2)D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

       在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

      最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

     这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

简单分析一下这个公式:

        整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。

        D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。

       G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。

      D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)

     下面这幅图片很好地描述了这个过程:

那么如何用随机梯度下降法训练D和G?论文中也给出了算法:

可以这么理解:

第一步:训练D,D是希望V(G, D)越大越好,所以是max。那么上面公式的第一项D(X)就要变大。第二项D(G(z))就要变小,才能使得V(G,D)变大。也就好比如:你给我送来了生成的图片,但是我把你判定为低,说明你送来的图片不够真实,你诚意不够,给我送过来更真实的图片吧。

第二步:训练G时,V(G, D)越小越好,所以是min。G不影响上面公式的第一项,所以G希望V(G,D)越小越好,也就是D(G(z))越大越好。可以理解为:好吧,既然你嫌弃我送的图片不够真实,那我就给你送更真实的过来,看招吧。

如此反复进行(弃不够真实--->我给你送更真实的--->还不够真实--->我再给你送更真实的--->.......),最终生成的图片将越来越真实。

二、DCGAN原理介绍

       我们知道深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一(论文地址:[1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

       DCGAN的原理和GAN是一样的,这里就不在赘述。它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变有:

 1)取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。

2)在D和G中均使用batch normalization

3)去掉FC层,使网络变为全卷积网络

4)G网络中使用ReLU作为激活函数,最后一层使用tanh

5)D网络中使用LeakyReLU作为激活函数

三、DCGAN in Tensorflow

        好了,上面说了一通原理,下面说点有意思的实践部分的内容。

       DCGAN的原作者用DCGAN生成LSUN的卧室图片,这并不是特别有意思。之前在网上看到一篇文章Chainerで顔イラストの自動生成 - Qiita,是用DCGAN生成动漫人物头像的,效果如下:

这是个很有趣的实践内容。可惜原文是用Chainer做的,这个框架使用的人不多。下面我们就在Tensorflow中复现这个结果。

1. 原始数据集的搜集

首先我们需要用爬虫爬取大量的动漫图片,原文是在这个网站:http://safebooru.donmai.us/中爬取的。我尝试的时候,发现在我的网络环境下无法访问这个网站,于是我就写了一个简单的爬虫爬了另外一个著名的动漫图库网站:konachan.net - Konachan.com Anime Wallpapers

爬虫代码如下:

这个爬虫大概跑了一天,爬下来12万张图片,大概是这样的:


可以看到这里面的图片大多数比较杂乱,还不能直接作为数据训练,我们需要用合适的工具,截取人物的头像进行训练。

2. 头像截取

截取头像和原文一样,直接使用github上一个基于opencv的工具:nagadomi/lbpcascade_animeface

简单包装下代码:


截取头像后的人物数据:

这样就可以用来训练了!如果你不想从头开始爬图片,可以直接使用我爬好的头像数据(275M,约5万多张图片):https://pan.baidu.com/s/1eSifHcA 提取码:g5qa

3. 训练

DCGAN在Tensorflow中已经有人造好了轮子:carpedm20/DCGAN-tensorflow,我们直接使用这个代码就可以了。

不过原始代码中只提供了有限的几个数据库,如何训练自己的数据?在model.py中我们找到读数据的几行代码:

这样读数据的逻辑就很清楚了,我们在data文件夹中再新建一个anime文件夹,把图片直接放到这个文件夹里,运行时指定--dataset anime即可。

运行指令(参数含义:指定生成的图片的尺寸为48x48,我们图片的大小是96x96,跑300个epoch):

4. 结果

第1个epoch跑完(只有一点点轮廓):

第5个epoch之后的结果:

第10个epoch:

200个epoch,仔细看有些图片确实是足以以假乱真的:

题图是我从第300个epoch生成的。

四、总结和后续

简单介绍了一下GAN和DCGAN的原理。以及如何使用Tensorflow做一个简单的生成图片的demo。

一些后续阅读:

1)Ian Goodfellow对GAN一系列工作总结的ppt,确实精彩,推荐:独家 | GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来(附PPT)

2)GAN论文汇总,包含code:zhangqianhui/AdversarialNetsPapers

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容