FlinkKafkaProducer
实现了TwoPhaseCommitSinkFunction
,也就是两阶段提交。关于两阶段提交的原理,可以参见《An Overview of End-to-End Exactly-Once Processing in Apache Flink》,本文不再赘述两阶段提交的原理,但是会分析FlinkKafkaProducer
源码中是如何实现两阶段提交的,并保证了在结合kafka的时候做到端到端的Exactly Once语义的。
TwoPhaseCommitSinkFunction分析
public abstract class TwoPhaseCommitSinkFunction<IN, TXN, CONTEXT>
extends RichSinkFunction<IN>
implements CheckpointedFunction, CheckpointListener
TwoPhaseCommitSinkFunction
实现了CheckpointedFunction
和CheckpointListener
接口,首先就是在initializeState
方法中开启事务,对于flink sink的两阶段提交,第一阶段就是执行CheckpointedFunction#snapshotState
当所有task的checkpoint都完成之后,每个task会执行CheckpointedFunction#notifyCheckpointComplete
也就是所谓的第二阶段。
FlinkKafkaProducer第一阶段分析
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
// this is like the pre-commit of a 2-phase-commit transaction
// we are ready to commit and remember the transaction
checkState(currentTransactionHolder != null, "bug: no transaction object when performing state snapshot");
long checkpointId = context.getCheckpointId();
LOG.debug("{} - checkpoint {} triggered, flushing transaction '{}'", name(), context.getCheckpointId(), currentTransactionHolder);
preCommit(currentTransactionHolder.handle);
pendingCommitTransactions.put(checkpointId, currentTransactionHolder);
LOG.debug("{} - stored pending transactions {}", name(), pendingCommitTransactions);
currentTransactionHolder = beginTransactionInternal();
LOG.debug("{} - started new transaction '{}'", name(), currentTransactionHolder);
state.clear();
state.add(new State<>(
this.currentTransactionHolder,
new ArrayList<>(pendingCommitTransactions.values()),
userContext));
}
这部分代码的核心在于
-
先执行
preCommit
方法,EXACTLY_ONCE模式下会调flush
,立即将数据发送到指定的topic,这时如果消费这个topic,需要指定isolation.level
为read_committed
表示消费端应用不可以看到未提交的事物内的消息。@Override protected void preCommit(FlinkKafkaProducer.KafkaTransactionState transaction) throws FlinkKafkaException { switch (semantic) { case EXACTLY_ONCE: case AT_LEAST_ONCE: flush(transaction); break; case NONE: break; default: throw new UnsupportedOperationException("Not implemented semantic"); } checkErroneous(); }
注意第一次调用的
send
和flush
的事务都是在initializeState
方法中开启事务transaction.producer.send(record, callback);
transaction.producer.flush();
pendingCommitTransactions
保存了每个checkpoint对应的事务,并为下一次checkpoint创建新的producer事务,即currentTransactionHolder = beginTransactionInternal();
下一次的send
和flush
都会在这个事务中。也就是说第一阶段每一个checkpoint都有自己的事务,并保存在pendingCommitTransactions
中。
FlinkKafkaProducer第二阶段分析
当所有checkpoint都完成后,会进入第二阶段的提交,
@Override
public final void notifyCheckpointComplete(long checkpointId) throws Exception {
// the following scenarios are possible here
//
// (1) there is exactly one transaction from the latest checkpoint that
// was triggered and completed. That should be the common case.
// Simply commit that transaction in that case.
//
// (2) there are multiple pending transactions because one previous
// checkpoint was skipped. That is a rare case, but can happen
// for example when:
//
// - the master cannot persist the metadata of the last
// checkpoint (temporary outage in the storage system) but
// could persist a successive checkpoint (the one notified here)
//
// - other tasks could not persist their status during
// the previous checkpoint, but did not trigger a failure because they
// could hold onto their state and could successfully persist it in
// a successive checkpoint (the one notified here)
//
// In both cases, the prior checkpoint never reach a committed state, but
// this checkpoint is always expected to subsume the prior one and cover all
// changes since the last successful one. As a consequence, we need to commit
// all pending transactions.
//
// (3) Multiple transactions are pending, but the checkpoint complete notification
// relates not to the latest. That is possible, because notification messages
// can be delayed (in an extreme case till arrive after a succeeding checkpoint
// was triggered) and because there can be concurrent overlapping checkpoints
// (a new one is started before the previous fully finished).
//
// ==> There should never be a case where we have no pending transaction here
//
Iterator<Map.Entry<Long, TransactionHolder<TXN>>> pendingTransactionIterator = pendingCommitTransactions.entrySet().iterator();
checkState(pendingTransactionIterator.hasNext(), "checkpoint completed, but no transaction pending");
Throwable firstError = null;
while (pendingTransactionIterator.hasNext()) {
Map.Entry<Long, TransactionHolder<TXN>> entry = pendingTransactionIterator.next();
Long pendingTransactionCheckpointId = entry.getKey();
TransactionHolder<TXN> pendingTransaction = entry.getValue();
if (pendingTransactionCheckpointId > checkpointId) {
continue;
}
LOG.info("{} - checkpoint {} complete, committing transaction {} from checkpoint {}",
name(), checkpointId, pendingTransaction, pendingTransactionCheckpointId);
logWarningIfTimeoutAlmostReached(pendingTransaction);
try {
commit(pendingTransaction.handle);
} catch (Throwable t) {
if (firstError == null) {
firstError = t;
}
}
LOG.debug("{} - committed checkpoint transaction {}", name(), pendingTransaction);
pendingTransactionIterator.remove();
}
if (firstError != null) {
throw new FlinkRuntimeException("Committing one of transactions failed, logging first encountered failure",
firstError);
}
}
这一阶段会将pendingCommitTransactions
中的事务全部提交
@Override
protected void commit(FlinkKafkaProducer.KafkaTransactionState transaction) {
if (transaction.isTransactional()) {
try {
transaction.producer.commitTransaction();
} finally {
recycleTransactionalProducer(transaction.producer);
}
}
}
这时消费端就能看到read_committed
的数据了,至此整个producer的流程全部结束。
Exactly-Once分析
当输入源和输出都是kafka的时候,flink之所以能做到端到端的Exactly-Once语义,主要是因为第一阶段FlinkKafkaConsumer
会将消费的offset信息通过checkpoint保存,所有checkpoint都成功之后,第二阶段FlinkKafkaProducer
才会提交事务,结束producer的流程。这个过程中很大程度依赖了kafka producer事务的机制,可以参考Kafka事务。
总结
本文主要分析了flink结合kafka是如何实现Exactly-Once语义的。
注:本文基于flink 1.9.0和kafka 2.3