LintCode 背包问题I

题目

在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i]

样例
如果有4个物品[2, 3, 5, 7]
如果背包的大小为11,可以选择[2, 3, 5]装入背包,最多可以装满10的空间。
如果背包的大小为12,可以选择[2, 3, 7]装入背包,最多可以装满12的空间。
函数需要返回最多能装满的空间大小。

分析

都可以简化为一位数组背包类型题一定要熟练画【表格】!对理解有很大帮助!!因为更改每一行数据时,只需要知道【上面的】和【左上面的】,所以从后向前添改不会出错。更复杂的背包(04,05,06……)就不是所有都能简化了的。

二维解法的代码

public int backpack(int m, int[] A) {
        int[][] dp = new int[A.length][m+1];
        //dp[i][j]为当背包总重量为j且有前i个物品时,背包最多装满dp[i][j]的空间
        
        //初始化动态规划矩阵的第一列
        //当背包空间为0时,不管物品多大,能放的空间都是0
        for(int i=0;i<A.length;i++)
            dp[i][0] = 0;
        
        //初始化动态规划矩阵第一行
        //当放入第一个物品时,如果背包空间大于物品,就放入,dp就等于第一个物品的重量,否则,就不放入,dp就为0
        for(int j=1;j<m+1;j++) {
            if(A[0]>j)
                dp[0][j] = 0;
            else
                dp[0][j] = A[0];
        }
        
        /*初始化第一行和第一列就可以使用状态转移方程了
        状态转移方程为:dp[i][j] = Math.max(dp[i - 1][j - A[i]] + A[i], dp[i-1][j]);
        由状态转移方程知道,要求出dp[i][j]只需要知道它上面和左上面的值就可以了
        所以,只要初始化第一行第一列就可以求出全部的*/
        
        for(int i=1;i<A.length;i++) {
            for(int j=1;j<m+1;j++) {
                if(A[i]<j)
                    dp[i][j] = Math.max(dp[i - 1][j - A[i]] + A[i], dp[i-1][j]);
                else
                    dp[i][j] = dp[i-1][j];
            }
        }
            
        
        
        return dp[A.length-1][m];
    }

优化空间复杂度代码

public class Solution {
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    public int backPack(int m, int[] A) {
        // write your code here
        int[] dp = new int[m+1];
        for (int i = 0; i < A.length; i++) {
            for (int j = m; j > 0; j--) {
                if (j >= A[i]) {
                    dp[j] = Math.max(dp[j], dp[j-A[i]] + A[i]);
                }
            }
        }
        return dp[m];
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容