量化交易:美国究竟比中国领先多久?

量化投资领域,中国不仅是本行业的技术储备不如欧美,而且实际上,量化交易经常运用各行各业的最先进科学模型来开发策略(eg. FBI用的人脸识别模型,NASA的空间物理模型、地质勘探的地心引力模型等)。这为量化交易提供支持的整个泛行业科研科技储备也落后于欧美。曾面试中国量化交易基金经理,感觉在本土化上具备很强优势,但研究水平和视野开阔度,比起外资同行还是稍逊一筹,这不光是能力问题,更多是技术环境问题。和其它交易策略不一样,量化交易不是纯粹靠交易天分市场直觉(但很重要,常能激发策略灵感)、而是很大程度靠科学研发能力(large scale research) 和技术水平(hardcore technologies)。

谈到这里,就简单说下量化交易的策略研发方法。

第一类,传统策略量化。很久前,交易员们就开始做趋势策略、反转策略、剥头皮策略、造市策略等各种不同风格的策略,只不过那时是手工操作,或者半自动化。随着市场发展技术成熟,量化交易把这些策略的研发和执行自动化了,从而提高了研发效率和水平、降低了交易成本,较大程度的排除了人的不稳定因素。这类交易,可以说是利用技术来提高原有策略的研发和执行,并在交易频率和规模有了变化,但本质上并不算崭新的策略类别,以前赚钱策略的也许能赚的多一些,亏钱的策略,量化也不能把他变成赚钱,这就是「思路错了量化也救不了你」。

第二类,科学技术驱动策略。是纯粹或很大程度上基于技术(technologies)差别的策略。这类也有一定历史,但真正变成一个庞大引入注目的策略类别,则是近10年计算机技术的飞速发展过程中产生的。常见的情形是,某机构因为采用的算法效率更高,计算机硬件更强大(超级计算机),产生了细微的速度和计算优势,从而在交易上抢的先机,并运用自动化交易频繁交易大量产品,用巨大的交易量产生稳定的收益。这类策略,IT技术和科学模型起了很关键的作用。这就是「技术就是你的思路」。

较早开始高频交易的Tradebot 是这类策略的典型运用者,在2002年就达到了每天一亿个订单,差不多在那个时候很多传统做市商被Tradebot 和 Getco 这样的新型电子做市商挤出市场,后来Tradebot 和 Getco 一路用技术碾压其它电子做市商竞争对手。在2005年,Tradebot 剥离了 BATS Global Markets,也就是现在美国第三大股票市场BATS。而1999年Tradebot 刚成立时,工作室地点是美国农村Kansas City的一间小地下室,里面阴暗潮湿,只有5个交易员坐在电脑屏幕前监控交易,那时每台电脑上都配备了一套叫着“Tradebot”的软件。而Getco 对策略的运用更广,野心更大。2012年,也是老牌做市商的 Knight 因技术故障,向纽交所发送大量错误order,导致公司巨亏4.4亿美元,股价两个交易日暴跌七成,被Getco以18亿美元价格收购。

人们常对西蒙斯文艺复兴的大奖章基金长期持续的高回报印象深刻,而实际上不太为媒体所知的是 Tradebot 常年保持每天(而不是每月或每年)盈利,not even one single losing day,原因是文艺复兴有很多新基金要向外部投资者融资(赚钱的大奖章很早停止了外部融资,而实际新基金表现比大奖章差很多),需要做一定程度的IR,而 Tradebot 不对外部投资者开放,自己低调赚钱,这也是HFT很普遍的特点。 如果不是市场几次出现大动荡,HFT被揪出来当替罪羊,媒体口诛笔伐,基本是没有多少人知道这个低调的类别。

第三类,新型量化策略。则是得益于计算机技术的发展,慢慢发展起来的策略,它不完全是基于执行的技术优势,更多是利用技术研发出新策略。例如统计套利,需要较多计算机计算资源进行数据挖掘模式识别,这在以前仅仅靠人力是难以胜任的,IT技术的发展和成本的降低使得这些策略的研发得以可行。这就是「技术产生新策略」。

量化投资这个行业的科技含量之高,使得它不仅招聘了大量数学博士、物理博士、计算机博士来利用其它学科的最先进技术和科学模型,同时不少研发出的模型和促进的技术进步,也反哺其它传统行业。最明显的是显卡和GPU的飞速发展,一定程度上是受到高频交易对巨大计算能力需求推动的。世界上有很大一部分超级计算机,除了呆在物理实验室,还在对冲基金里。

我们究竟落后在什么地方呢?

1. 交易市场的落后:包括交易品种、交易的微观数据、交易市场的不完善,具体举例来说,交易品种我们连期权还没有;交易的微观数据国外交易所是可以达到分笔的级别,而我们是每0.5秒撮合完成后截面推送;交易市场本身是垄断行业,除上海深圳股票交易所以及四家期货交易所外没有二级市场交易所,而且交易所间交易品种相互独立,不存在竞争性;同时杠杆交易、做空等等交易机制也非常不完善;更不要提市场本身存在着的内幕交易行为。导致的直接后果是很多量化的思路根本无法实现。

2.交易理念的落后:大多数量化交易人员的思路还是K线如何走出形态后追趋势的阶段,本质上来说,还是处于用量化方法驱动主观交易逻辑的层次,量化的意义只是让交易更客观、更少受到人为影响;真正的用较大算法难度的统计模型驱动的高等级策略市场上其实很少很少,大多都是国外回来的团队在操作。

3. 交易经验的不足:国内量化交易的起点可以视为股指期货的上市,现在量化交易的主要阵地也是这里。但股指期货只有短短不到4年的时间,本身样本也太少了。

不停闪烁的超级电脑自动进行着高速交易,荧幕上滚动着通过高速网络提前获取的最新市场消息,加上通过杠杆放大的头寸,账户的盈利不断上跳...很多趋势投资者把量化交易视为一样“可以躺着赚钱的”形式。但现实真有这么美好么?

美国投资公司ConvergEx的首席策略师Nick Colas在参加了一次量化交易大会后颇为感慨,为我们提出了做量化交易的十大难题。

1. 量化交易员(宽客)与基本面投资者一样会遭遇亏损

我在量化交易大会那天本想听到广泛成功的算法及量化处理过程、可以输出完美的回溯测试结果并且在最小的风险上获得最大收益的策略,我还希望听到电脑科技、执行速度、或者数据挖掘方面的新进展。

但听了一圈下来,我发现量化投资其实相对来说还处在初级发展阶段,比如你经常可以听到关于“新闻对于股价的真实影响有多少?”的争论,而此时基本面投资者只需简单的基于预测特定事件、比如超过或差于预期的财报做交易即可。而量化交易者则需要搞清楚具体此类消息对股价的平均影响程度,这不是件容易的事,你的研究对象时刻在变化着。

2. 想在不同的股票/市场/产品中研究出一套通用交易规则很难

如果你想研究出一套只基于公司财报的交易系统这不难,比如基于超出预期的营收或股息来买入。但是供给面的情况如何?消费者层面的情绪如何?事实证明,财报的影响不及后两者的大,但是你若想把后两者纳入交易模型中,这相当费力费时。

3. 股票、基本面、新闻消息之间的关系不停变化着

记得2009年美股到达低点的时候,很多“低质”公司的回报**高于“优质”公司的回报。很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要花上很久很久。对于基本面投资者来说,这是掘金的好时候,但对于量化投资者来说却是噩梦,因为大多数模型此时都会显示做多“优质股”做空“垃圾股”,后果则可想而知。

4. 数学有时帮你解决问题有时又会成为障碍

宽客们要在浩如烟海的金融数据中“寻宝”,但是他们与普通人一样,一天只有24个小时,经常会碰到因一个分析无法推进而其他分析也陷入停顿的状况。

5. 好材料却并不容易使用

Twitter(美国的微博)是市场突发消息和传闻的最大出处,所有投资者都不会无视这里传出的讯息。但是这里的消息格式往往不规范,语法也千奇百怪,你无法让计算机程序挑选出有效信息并运用于自动交易中。

6. 并非100%有效

不管是量化还是基本面投资者,大家都是在玩数字游戏。如果你的交易生涯中能有66%的胜率就已经算干的很好了。不过量化交易与后者的不同点在于持仓时间,量化交易一般只做稳而快的短线交易,不像基本面投资可以等上相当长的一段时间,在一只股票上获取甚至100%的收益率。

7. 一切都从回溯测试开始

多数时候,回溯测试可以证明的你的设计交易策略在过去的表现,这是量化交易世界中非常重要的一块内容,不过并不是所有宽客都能意识到,过去不代表未来。

8. 交易信号就在那里,也不在那里

现在的信息社会到处都是数据,科学家们甚至可以做到预测每家沃尔玛超市上空的天气如何。Google的统计为我们展示着每天全世界网民都在搜索哪些内容。包括你想在市场中搜索上升动能最强的股票,如今都不难做到。面对茫茫多的数据,你该把时间精力放在哪一块呢?这是个难题。

9. 量化交易正被监管机构瞄上

巴菲特决定让旗下Business Wire终止向高频交易公司提供特许直投新闻的服务。这是巴菲特为保护自己公司声誉而高调与高频交易撇清关系的行为。虽然量化投资≠高频交易,但是不能否认,量化投资的主要优点之一便是“快”!如今量化投资者们获取信息的速度问题,已然被监管者们划进了重点监视区。下回监管者们又会关注哪个点呢?难说。

10. 愈发激烈的竞争

很显然,量化交易在发展了20多个年头后,依然非常流行,但这背后也就意味着同行内的竞争十分激烈,越来越快的电脑与网络,越来越复杂的算法和数据库,入行门槛也不断提高。

来源:投基家

拓展阅读:1.一个量化策略师的自白(好文强烈推荐)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容

  • 自我介绍 大家好,我是博士后研究员肖子龙,在深圳某金融机构任职,研究领域是智能投顾。很高兴今天能来到AI慕课学院和...
    shenciyou阅读 8,283评论 3 18
  • 萍聚如果不被贴上标签,心就可以像风一样的自由。茶道的本质不过是烧水点茶,如果能遇见一泡茶让自己喝的开开心心,那就是...
    一盏茗悦阅读 89评论 0 4
  • 同事丽丽说起孩子,满肚子委屈。儿子轩轩今年上小学二年级,以前她说什么,孩子基本都能很听话地去做,现在慢慢地越来越不...
    w玉壶冰心阅读 1,187评论 0 3
  • 管理是管事,不是管人,人是应该被重视和尊重的 知识不是学问,知识是你所学到的东西,而学问是你会解决问题,会认识事物...
    七与五阅读 144评论 0 0