漫话:如何给女朋友解释灭霸的指响并不是真随机"消灭"半数宇宙人口的?

周末,陪女朋友去电影院看了《复仇者联盟4:终局之战》,作为一个漫威粉三个小时看的是意犹未尽。出来之后,准备和女朋友聊一聊漫威这十年。









在《复仇者联盟》电影中,灭霸毕生都有一个目标,那就是通过抹除一半的生命来维持宇宙的平衡。

并且,灭霸还说,这个抹除过程是:随机性的、不夹私情、绝对公平、无论贵贱。



那么,到底什么是随机?他所谓的随机真的如他所说是不夹私情、绝对公平以及无论贵贱的吗?

随机性

随机性这个词是用来表达目的、动机、规则或一些非科学用法的可预测性的缺失。一个随机的过程是一个不定因子不断产生的重复过程。

提到随机性,不得不提的就是随机数,随机数在计算机应用中使用的比较广泛,最为熟知的便是在通信安全和现代密码学等领域中的应用。



随机数分为真随机数和伪随机数,我们程序中使用的基本都是伪随机数。

  • 真随机数,通过物理实验得出,比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等。需要满足随机性、不可预测性、不可重现性。

  • 伪随机数,通过一定算法和种子得出。软件实现的是伪随机数。

只要这个随机数是由确定算法生成的,那就是伪随机。只能通过不断算法优化,使你的随机数更接近随机。

有限状态机不能产生真正的随机数的。所以,现代计算机中,无法通过一个纯算法来生成真正的随机数。无论是哪种语言,单纯的算法生成的数字都是伪随机数,都是由可确定的函数通过一个种子,产生的伪随机数。


为啥灭霸并不公平?

前面我们提到过,真随机数要满足随机性、不可预测性、不可重现性。

我们按照这三个性质逐一分析下,看看灭霸到底是不是公平的。

随机性

随机性,指的是不存在统计学偏差,是完全杂乱的数列。

复联3中,灭霸打了指响之后,复仇者联盟中存活和死亡的名单其实并不是随机的。其中很多对CP都是杀1留1的。如钢铁侠——蜘蛛侠、美队——冬兵、火箭浣熊——格鲁特、蚁人——黄蜂女等。



而且,还有一点就是,如果真的是随机性的话,那么灭霸自己也是有一定的概率会被抹除的,但是,他早就知道自己不会被抹除,并且已经制定好了退休计划。



并且,在复联3中,奇异博士用时间宝石和灭霸换了钢铁侠的生命,说明灭霸其实是选择性的进行抹除的。

可见,灭霸的指响抹除过程并不是随机的。

不可预测性

不可预测性,指的是不能从过去的数列推测出下一个出现的数。

这一点了解电影的朋友应该都知道,奇异博士曾经利用时间宝石穿越了时空,预测了未来,并看到了14000605种可能。



可见,灭霸的指响抹除过程并不是不可预测的。

不可重现性

不可重现性,除非将数列本身保存下来,否则不能重现相同的数列。

在复联3中,钢铁侠问奇异博士,14000605种可能中,胜利的有多少种。奇异博士回答:1种。



在复联4中,最后奇异博士对钢铁侠比了下面这样一个手势。说明,他看到的那唯一一种胜利的可能要复现了。



可见,灭霸的指响抹除过程并不是不可复现的。

综上,灭霸的指响抹除过程不符合随机性、不可预测性以及不可复现性。所以,灭霸的指响抹除过程并不是真正的随机的。

通过现象来看,灭霸的抹除操作很可能只是通过简单的分层抽样实现的。简单操作过程如下:

  1. 把需要特殊处理,不做抹除的人的DNA单独从所有物种的DNA库中识别出来,并保存到缓存中。
  2. 根据不同的条件把DNA库中的所有生命体划分成若干区块,如地球人、阿斯加德人等。把他们的DNA信息保存到不同的数据库中。在遍历的过程中,如果遇到缓存中已有的数据,则跳过。
  3. 再根据物种多样性,如性别、年龄段、职业等把同一个分库中的数据分别划分到不同的表中,保证每一张分表中都包含了完整的物种多样性。
  4. 遍历所有数据库,按顺序的删除每个数据库中一半的分表。如地球人的数据库中共有1024张表,只保留512张即可。
  5. 再把缓存中的数据同步到数据库中。

这样,在后面需要复活这些人的时候,只需要找到数据库的Binlog,把数据重新写入数据库就行了。






真随机数生成器

真正的随机数是使用物理现象产生而不是计算机程序产生的。生成随机数的设备我们称之为真随机数生成器。

这样的设备通常是基于一些能生成低等级、统计学随机的“噪声”信号的微观现象,如热力学噪声、光电效应和量子现象。

从某种程度上来说,基于经典热噪声的随机数芯片读取当前物理环境中的噪声,并据此获得随机数。这类装置相对于基于软件算法的实现,由于环境中的变量更多,因此更难预测。

然而在牛顿力学的框架下,即使影响随机数产生的变量非常多,但在每个变量的初始状态确定后,整个系统的运行状态及输出在原理上是可以预测的,因此这一类装置也是基于确定性的过程,只是某种更难预测的伪随机数。

但是,量子力学的发现从根本上改变了这一局面,因为其基本物理过程具有经典物理中所不具有的内禀随机性,从而可以制造出真正的随机数产生器。

据美国国家标准与技术研究院(NIST)官网消息,该机构研究人员在2018年4月出版的《自然》杂志上撰文指出,他们开发出一种新方法,可生成由量子力学保证的随机数字。新技术超越了此前获得随机数字的所有方法,得到了“真正的随机数字”,有助增强密码系统的安全性。

NIST数学家彼特·比尔霍斯特进一步解释说:“诸如翻转硬币之类的情况似乎是随机的,但如果能看到硬币确切的下落路径,最终结果也是可以预测的。因此,很难保证给定经典来源真正不可预测。量子力学在产生随机性方面表现更好,量子随机是真正的随机,因为对处于‘叠加’状态的量子粒子进行测量,得到的结果基本上是不可预测的。”

在复联4中,也有很多和量子物理有关的知识,甚至最终可以扭转乾坤也是依靠的量子领域。漫威电影的宗旨可以高度概括成以下四句话:遇事不决,量子力学。 解释不通,穿越时空。 篇幅不够,平行宇宙。 定律不足,高维人族。





Java中的随机数生成器
Java中生成随机数还是比较简单的,Java提供了很多种API可以供开发者使用。

通过时间获取

在Java中,可以通过System.currentTimeMillis()来获取当前时间毫秒数:

final long l = System.currentTimeMillis();

若要获取指定范围的数字,只需要对数字进行取模就行了,如下方法可以获得0-99的随机数:

final long l = System.currentTimeMillis();
final int i = (int)( l % 100 );

Math.random()
通过Math.random()可以返回0(包含)到1(不包含)之间的double值。使用方法如下:

final double d = Math.random();

若要获取int类型的整数,只需要将上面的结果转行成int类型即可。比如,获取[0, 100)之间的int整数。方法如下:

final double d = Math.random();
final int i = (int)(d*100);

Random类
Java提供的伪随机数发生器有java.util.Random类和java.util.concurrent.ThreadLocalRandom类。

Random类采用AtomicLong实现,保证多线程的线程安全性,但正如该类注释上说明的,多线程并发获取随机数时性能较差。

多线程环境中可以使用ThreadLocalRandom作为随机数发生器,ThreadLocalRandom采用了线程局部变量来改善性能,这样就可以使用long而不是AtomicLong,此外,ThreadLocalRandom还进行了字节填充,以避免伪共享。

如使用Random获取[0, 100)之间的int整数,方法如下:

Random random = new Random();
int i2 = random.nextInt(100);

强随机数发生器
强随机数发生器依赖于操作系统底层提供的随机事件。强随机数生成器的初始化速度和生成速度都较慢,而且由于需要一定的熵累积才能生成足够强度的随机数,所以可能会造成阻塞。熵累积通常来源于多个随机事件源,如敲击键盘的时间间隔,移动鼠标的距离与间隔,特定中断的时间间隔等。所以,只有在需要生成加密性强的随机数据的时候才用它。

Java提供的强随机数发生器是java.security.SecureRandom类,该类也是一个线程安全类,使用synchronize方法保证线程安全,但jdk并没有做出承诺在将来改变SecureRandom的线程安全性。因此,同Random一样,在高并发的多线程环境中可能会有性能问题。





这个锅,研发人员不背!!!

根据我的猜想。对于无限手套这个产品,产品经理最初的需求可能只是满足使用者的一个愿望而已,而几颗宝石就像是七龙珠一样,集齐之后打个指响就可以实现愿望。

开发者只是提供了一个可以满足愿望的API接口,参数是一个Callback,具体做什么事情,完全是使用者传进来的想法而已。就像灭霸要抹除一半的生命、绿巨人想要把被抹掉的人救回来、而钢铁侠只是想把坏人抹掉而已。

最后,Tony, Love You 3000 Times.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • 随机数    ———— 不可预测的源泉 使用随机数的密码技术  随机数的使用场景,比如: 生成密钥 用于对称密码和...
    Invincibled阅读 3,239评论 0 2
  • 方法1 (数据类型)(最小值+Math.random()*(最大值-最小值+1)) 例: (int)(1+Math...
    GB_speak阅读 40,977评论 2 6
  • 一、随机种子 参考随机数与随机种子[http://blog.csdn.net/hulifangjiayou/art...
    合肥黑阅读 5,558评论 0 2
  • 皱纸技法,是我看完《水彩圣经》这本超级超级厚的书之后,学到的最有用的一个技法。 对于院校专业大佬们来说,可能是个不...
    文朴阅读 2,360评论 23 30