操练代码之优化器

就是Adam,Adagrad,RMSprop,SGD,Momentum这5个优化器。

一,代码

import torch
import torch.nn

import torch.utils.data as Data
import matplotlib
import matplotlib.pyplot as plt

matplotlib.rcParams['font.sans-serif'] = ['SimHei']

x = torch.unsqueeze(torch.linspace(-1, 1, 500), dim=1)
y = x.pow(3)

LR = 0.01
batch_size = 15
epoches = 5
torch.manual_seed(10)

dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    dataset=dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=2
)

class Net(torch.nn.Module):
    def __init__(self, n_input, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden_layer = torch.nn.Linear(n_input, n_hidden)
        self.output_layer = torch.nn.Linear(n_hidden, n_output)

    def forward(self, input):
        x = torch.relu(self.hidden_layer(input))
        output = self.output_layer(x)
        return output


def train():
    net_SGD = Net(1, 10, 1)
    net_Monmentum = Net(1, 10, 1)
    net_AdaGrad = Net(1, 10, 1)
    net_RMSprop = Net(1, 10, 1)
    net_Adam = Net(1, 10, 1)
    nets = [net_SGD, net_Monmentum, net_RMSprop, net_AdaGrad, net_Adam]

    optimizer_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    optimizer_Momentum = torch.optim.SGD(net_SGD.parameters(), lr=LR, momentum=0.6)
    optimizer_RMSprop = torch.optim.RMSprop(net_SGD.parameters(), lr=LR, alpha=0.9)
    optimizer_AdaGrad = torch.optim.Adagrad(net_SGD.parameters(), lr=LR, lr_decay=0)
    optimizer_Adam = torch.optim.Adam(net_SGD.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [optimizer_SGD, optimizer_Momentum, optimizer_RMSprop, optimizer_AdaGrad, optimizer_Adam]

    loss_function = torch.nn.MSELoss()
    losses = [[], [], [], [], []]

    for epoch in range(epoches):
        for step, (batch_x, batch_y) in enumerate(loader):
            for net, optimizer, loss_list in zip(nets, optimizers, losses):
                pred_y = net(batch_x)
                loss = loss_function(pred_y, batch_y)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                loss_list.append(loss.data.numpy())
    print(losses)
    plt.figure(figsize=(12, 7))
    labels = ['SGD', 'Momentum', 'RMSprop', 'AdaGrad', 'Adam']
    for i, loss in enumerate(losses):
        print(loss, '----------')
        plt.plot(loss, label=labels[i])
    plt.legend(loc='upper right', fontsize=15)
    plt.tick_params(labelsize = 13)
    plt.xlabel('train step', size=15)
    plt.ylabel('model loss', size=15)
    plt.ylim((0, 0.3))
    plt.show()

if __name__ == '__main__':
    train()

二,输出截图


2024-08-19 19_52_29-ch2 – 333.py.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容