最强六大开源轻量级人脸检测项目分析 | 附打包下载

​随着深度学习的兴起,工业界和学术界越来越多的使用基于深度学习的方法,而不是传统的基于模板匹配,纹理提取或者像素积分图等方法。因为人脸检测本身并不属于特别复杂的任务,因此轻量级的深度学习模型即可满足该任务。本文汇总了六大开源的人脸检测项目。

本文首发:AIZOO,欢迎在Vx关注我们

虽说深度学习是个黑箱,但基于深度学习的通用目标检测算法(例 如 Faster-RCNN,SSD,YoloV3、 RetinaNet等)的检测效果和鲁棒性,远远的超过基于纹理、边缘、Harr特征、Sift特征的传统计算机视觉方法,而且近几年随着模型压缩、量化技术的进步,模型运行速度也越来越快。

对于通用的目标检测算法,以大家常用的 SSD 和 YoloV3 算法为例,因为算法在设计之初,是为Pascal VOC 或者 COCO这种 20 类 和 80 类的多类别任务设计的,因此其 backbone 网络,也就是特征提取网络一般使用 VGG16、Darknet53、ResNet18这种网络,这些网络的一个通用特点是,其卷积层的卷积核数目通常比较多(例如256,512),导致模型参数量动辄几千万,运算量巨大。

如果我们拿这些通用目标检测算法来检测一类,比如只检测人脸、行人或者车辆时,使用那么多的卷积核数量、那么深的网络其实是不必要的。如果要检测 80 个类别,可能需要更多参数量来拟合,但是对于一两个类别,其实是有点杀鸡用宰牛刀了,如果你的任务不复杂,却用了ResNet18\34这种网络,你会发现很多卷积核的激活,其实是 0,导致白白多增加了很多计算量。所以,针对特定的人脸检测任务,其实一些非常轻量级的网络即可满足任务要求。

元峰曾经写了一篇介绍南科大于仕琪老师的开源人脸检测项目的文章(人脸检测速度近2000FPS,就在刚刚,这位硬核老师将训练代码开源了),有不少读者对该工作很质疑,认为模型太小,导致有误检测,于老师在文章评论区亲自现身回答了大家的质疑

对于比赛刷榜,我们可以用很大的模型,例如某 AI 公司在 WiderFace上夺冠的模型,结构用 RetinaNet,backbone 用 ResNet152,另外,FPN结构也安排上,多模型融合安排上,更多的 anchor 组数安排上,这样的模型对于刷榜非常实用,但是在工业界非常不实用,假如要部署到 ARM 的嵌入式设备上,大概率直接卡死。

随着 AI 落地为王时代的到来,大家越来越注重精度和速度的权衡(trade off),本文精选了六大轻量级的开源人脸检测项目,并对其进行简单赏析和介绍。

言归正传,下面我们按照Github上star数目从高到低依次介绍。

1. libfacedetection

Github star: 9.3k

作者:于仕琪

链接:https://github.com/ShiqiYu/libfacedetection

模型参数量:232万,体积 3.34M

前几天元峰已经对该项目进行过一次介绍了,该项目使用一个SSD架构的人脸检测模型,在酷睿 i7 的CPU上,320x240分辨率下可以达到296.21 FPS,下图是该项目在不同分辨率和单线程下的速度概览。

模型结构也比较简单,就是一个轻量级的 SSD 架构,共四个定位层,而且借鉴了RetinFace的关键点方法,可以同时回归5个关键点。模型体积只有232万,体积仅有3.34M

该项目的最大亮点,其实是于老师搞了一个纯C++的推理版本,不依赖第三方深度学习库,非常有利于工程部署。

2. Ultra-Light-Fast-Generic-Face-Detector-1MB

Github star: 4.7k

作者:Linzaer

链接:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

体积:1.04M, int8量化后 300KB

该模型是针对边缘计算设备设计的人脸检测模型。并提供了精简网络和RFB网络两种,在320x240的输入分辨率下 90~109 FPS左右。

该模型的结构与上述于老师的模型结构非常相似,也是 SSD 架构,共有4个定位层,模型结构如下图所示。

另外,该项目提供了NCNN、MNN、Caffe、Onnx、Opencv的推理代码,可以给我们部署项目提供大量参考样例。

3. A-Light-and-Fast-Face-Detector-for-Edge-Devices

Github star: 897

作者:YonghaoHe

链接:https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices

体积:6.1 M

从名字可以看出来,这也是一个面向边缘设备的检测模型,该模型同样是 SSD架构的,不过相比前述两个模型,该模型有八个定位层,分别对应tiny、small、medium和large四个尺度,backbone 网络共有 25 个卷积层。

该模型在 Nvidia TX2下,320x240分辨率下可以达到 50.92 FPS。

另外,该 repo 还提供了人头检测、行人检测、车辆检测的代码和模型。

4. CenterFace

Github star: 607

作者:Star-Clouds

链接:https://github.com/Star-Clouds/CenterFace

体积:7.3 M、同精度小模型 2.3M

CenterFace是 anchor free 的模型结构,应该算是CenterNet针对人脸检测任务的特例,这一点上跟RetinaFace作为RetinaNet的在人脸任务的特例有异曲同工之妙,而且该模型同时回归了五个关键点。

该网络的backbone是MobileNetV2,额外添加了FPN结构。

下图是CenterFace的速度,在 2080TI上可以仅4.4ms。Anchor Free的模型,没有NMS的过程,也能节省很多后处理时间。

5. DBFace

Github star: 195作者:dlunion

链接:https://github.com/dlunion/DBFace

体积:7.03M

DBFace是一个Anchor Free的网络结构,模型原理可以说与CenterFace非常相似。这里不再展开详细的介绍了。

6. RetinaFace MobileNet0.25

Github star: 不好定义(6.4k)

作者:yangfly

链接:https://github.com/deepinsight/insightface/issues/669

体积:1.68M

这个项目来自于知名的InsightFace项目,该项目在Github有6.4k star,InsightFace提出了知名的RetinaFace、ArcFace算法,而且开源了详细的训练代码和预训练模型,可以说是非常良心的开源项目。

但是 RetinaFace(应该是受 RetianNet 的结构启发而成)本身的 backbone 是 ResNet50,yangfly 大佬将其替换为了 MobileNet0.25,模型大小仅1.68MB。RetinaFace 的模型结构如下,这里的 backbone网络是 MobileNet 0.25。

        根据作者的开源结果,我们对以上6大开源轻量级人脸检测做一个速度和准确度的对比汇总。

另外,笔者将六大框架打包下载好了,下载链接

链接: https://pan.baidu.com/s/15K_ULtirQgZr2xptYf2SSw 提取码: ibw4

号外,我们新版本的网站AIZOO.com已经上线了,欢迎圈里算法工程师将您的算法展示到 AIZOO 平台,我们致力于打造需求方和 AI 工程师的桥梁,也欢迎对人工智能算法有需求的朋友向我们提需求。

精彩推荐

2020年代,中国AI创业公司将走向何方

都2020年了,在校学生还值得继续转行搞AI吗

AIZOO开源人脸口罩检测数据+模型+代码+在线网页体验,通通都开源了

新手也能彻底搞懂的目标检测Anchor是什么?怎么科学设置?[附代码]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,983评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,354评论 3 403
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,216评论 0 367
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,061评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,073评论 6 400
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,541评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,906评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,881评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,428评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,460评论 3 346
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,578评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,176评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,913评论 3 339
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,348评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,490评论 1 277
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,142评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,650评论 2 366

推荐阅读更多精彩内容