Pre, In, Post Order Traversal

Related problem:

144 Binary Tree Preorder Traversal
94 Binary Tree Inorder Traversal
145 Binary Tree Postorder Traversal
99 Recover Binary Search Tree

在写tree的算法之前,前中后序遍历的 recursive 写法和 iterative 写法必须熟练:

You can find the definitions for the three traversals here

  • Recursive Solution (Trivial Solution) :
/*
 Definition for a binary tree node.
 struct TreeNode {
      int val;
      TreeNode *left;
      TreeNode *right;
      TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };
 */
//preOrder
void preorder(TreeNode* root) {
        if (!root) return; // '!root' means 'when root == nullptr'
        cout << root -> val << endl;
        preorder(root -> left);
        preorder(root -> right);
}
//inOrder
void inorder(TreeNode* root) {
        if (!root) return;
        inorder(root -> left);
        cout << root -> val << endl;
        inorder(root -> right);
}
//postOrder
void postorder(TreeNode* root) {
        if (!root) return;
        postorder(root -> left);
        postorder(root -> right);
        cout << root -> val << endl;
}

But you will never get a chance to use these recursive version in a real interview, what really matters is the iterative solution below:


  • Iterative Solution:
    The meaning of pre/in/post is pretty straight forward in the recursive solution: it is the position where we put the cout << root -> val << endl; that distinguish those three traversals. But you need to get this from a different view in iterative solution.
My thoughts:

preorder: we need to make sure the value in the current TreeNode has been visited before we get to left and right subtree, and we need to make sure the whole left subtree has been visited before we visit right subtree.


Inorder: we need to make sure the whole left subtree has been visited before we visit current node, then we visit right subtree node.


postorder: we need to make sure all the children nodes for the current node has been visited before we visit current node, and the left subtree is visited before right subtree.

  • preorder:
class Solution {
    void pushLeft(TreeNode* root, stack<TreeNode*>& nodes, vector<int>& res) {
    // this function here push all the LEFT node we can get from the input node
        while (root) {
            nodes.emplace(root); // emplace c++11
            res.emplace_back(root -> val); // visit the node once we meet it
            root = root -> left;
        }
    }
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        if (!root) return res;
        stack<TreeNode*> nodes; // store the parent node, 
                               //all nodes in the stack has already been visited
        pushLeft(root, nodes, res);
        while (!nodes.empty()) {
            TreeNode* cur = nodes.top() -> right; // cause nodes in the stack 
// has already been visited, we just need to visit the right subtree
            nodes.pop();
            if (cur) // visit the left subtree for the right children
                pushLeft(cur, nodes, res);
        }
        return res;
    }
};

  • inorder:
class Solution {
      void pushLeft(TreeNode* root, stack<TreeNode*>& nodes) {
  // this function here push all the LEFT node we can get from the input node
        while (root) {
            nodes.emplace(root); // emplace c++11
            root = root -> left;
        }
    }
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> res;
        if (!root) return res;
        stack<TreeNode*> nodes; // store the parent node, 
                             //all nodes in the stack has already been visited
        pushLeft(root, nodes);
        while (!nodes.empty()) {
            TreeNode* cur = nodes.top() -> right; 
            // nodes in the stack has not been visited yet  

            res.emplace_back(nodes.top() -> val); // a node can get to the top postion
// if and only if it doesn't have a left children or all its left subtree has been
// visited, so it is safe to visit top node now

            nodes.pop(); // once we visited the node, pop it

            if (cur) // store the left subtree for the right children
                pushLeft(cur, nodes);
        }
        return res;
    }
};

Notice: the only difference between above two iterative algorithms is the position of res.emplace_back(nodes.top() -> val), so actually I'm using the same idea used in recursive solution. But it's gonna be a different story when it comes to postorder.

  • postorder
class Solution {
void pushLeft(TreeNode* root, stack<pair<TreeNode*, bool>>& nodes) {
      while (root) {
          nodes.emplace(root, root -> right == nullptr);
          root = root -> left;
      }
}
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> res;
        if (!root) 
            return res;
        stack<pair<TreeNode*, bool>> nodes;
        pushLeft(root, nodes);
        while (!nodes.empty()) {
            if (!nodes.top().second) {
                nodes.top().second = true;
                pushLeft(nodes.top().first -> right, nodes);
            } else {
                res.emplace_back(nodes.top().first -> val);
                nodes.pop();
            }
        }
        return res;
    }
};

Explanation:

Since we push all the left nodes until the left subtree is empty, the top element nodes.top() in the stack is either guaranteed to have an empty left children, or all nodes in its left subtree has been visited. So we only need to record whether its right children has been visited or not. Once its right subtree has been visited, we can safely visit nodes.top() and pop the top.


Morris Traversal:

This algorithm takes O(n) time complexity and O(1) space complexity to complete inorder traversal and preorder traversal. It reconstruct the tree during traversal and recover it after finished traversal.
Detailed explanation: Morris Inorder Tree Traversal

This algorithm can only be used to solve pre/in order.

class Solution {
public:
    void recoverTree(TreeNode* root) {
        TreeNode* current = root;
        TreeNode* first = NULL;
        TreeNode* second = NULL;
        TreeNode* pre = NULL;
        while (current) {
            if (!current -> left) {
                if (pre && pre -> val > current -> val) {
                    if (!first) {
                        first = pre;
                        second = current;
                    } else {
                        second = current;
                    }
                }
                pre = current;
                current = current -> right;
            } else {
                TreeNode* predecessor = current -> left;
                while (predecessor -> right && predecessor -> right != current)
                    predecessor = predecessor -> right;
                if (predecessor -> right) {
                    if (pre && pre -> val > current -> val) {
                        if (!first) {
                            first = pre;
                            second = current;
                        } else {
                            second = current;
                        }
                    }
                    pre = current;
                    predecessor -> right = nullptr;
                    current = current -> right;
                } else {
                    predecessor -> right = current;
                    current = current -> left;
                }
            }
        }
        swap(first -> val, second -> val);
    }
};

Explanation:

Problem #99 require O(n) time complexity and O(1) space complexity, but need to traverse the whole tree to get those wrong nodes. Recursive algorithm uses system stack which is also counted as occupying memory, therefore, Morris Traversal is qualified here.

  • If there are two nodes swapped by mistake in a BST, the inorder sequence of this tree will be interrupted.
  • If pre -> val > current -> val , then there must be a wrong node between pre and current.
    1.if it is the first time to meet an interruption, pre is wrong.
    2.if it is the second time to meet an interruption, current is wrong.
  • Swap the wrong nodes back to its right position.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容