读书笔记:大数据时代

一、读书笔记

随着网络的普及、计算机运算和存储能力的提高,我们获取信息越来越容易,越来越多。绝大多数信息对我们来说可能都是噪音,或者用过一次后就被丢弃;而对有大数据思维的公司或个人来说,这些则是零散的金粉,他们可以从中挖掘出许多小数据无法得到的意想不到的结果。比如人们所用的搜索词在搜索完成之时就失去用处,Google偏偏将它们重新利用,用以改善结果的排序,用来预测流感感染情况。word语法检查,小数据下表现最好的算法在大数据下准确率却最差。谁曾想坐姿可以转化成数据,并开发成汽车防盗系统?进而扩展到盗贼识别?

大数据时代真的只有想不到,没有做不到。它深刻的变革着我们的工作、生活、甚至思维方式。

诚如维克托所言,大数据正改变着我们的思维模式:

1.不是样本而是全部:得到全部数据并不那么难,而且结果更全面可靠,我们不再依赖小数据时代的随机取样、假设-实验-结论模式,取而代之的是直接对全部数据进行分析挖掘;

2.不是精确性而是混杂性:大数据时代我们不再执着于精确,而是允许一点瑕疵。我们要做的不是以高昂的代价消除所有的不确定性,而是接受这些纷繁的数据并从中获益。以谷歌翻译为例,它搜罗了所有可以利用的数据,虽然搜集的有错误翻译,但巨大的语料库优势完全压倒了缺点,使其好于布朗、微软的班科和布里尔、IBM的Candide。又如word语法检查,小数据下表现最好的算法在大数据下准确率却最差。混杂的大数据能创造比精确的小数据更好的结果!
小数据模式下,小的错误会导致极大的偏差,因此要求精确。值得注意的是,大数据的混杂性只是现实,而不是其固有特性,随着技术的发展将会被改善。

3.不是因果关系而是相互关系:千百年来,我们一直在寻找事件背后的原因。事实上,如果凡事皆有因果的话,我们就没有决定任何事的自由了。
基于大数据分析事物间的相互关系,使我们从因果串联思维变为相互并联思维。相互关系能提醒我们某些事正在发生,这些提醒非常有用。基于相关关系的预测是大数据的核心。通过找出一个关联物并监控它,我们就能预测未来。如塔吉特怀孕预测,美国折扣零售商塔吉特通过对女性消费记录分析,可以发现她是否怀孕,从而在相应阶段寄送相应的折扣券。

同样,大数据下的商业变革正在上演。

戏中主角分别是大数据拥有者、大数据技术公司、大数据思维的公司或个人。第一个吃螃蟹的人早已斩获良多,更多的人也开始去尝试;随着技术的发展,拥有大数据技术的公司的领先优势也越来越弱;而数据本身的价值则与日俱增。试想,一个拥有思维和技术的新公司,如何去跟一个拥有海量数据且知道什么更好的公司去竞争?
随着行业发展,数据中间商也将粉墨登场。因为有些数据的价值只能通过中间人来挖掘。航空公司不到最后一刻不会发布航班晚点,也不会告诉你何时买票最便宜,但只要有数据,你就能知道这些。还有一些公司愿意把数据给非营利机构。

隐忧:

大数据确实给我们带来诸多便利,使我们的生活更便利、更美好。但我们也变得越来越透明,通过你的检索词、购物、评论等就能轻易定位到精确的个人!想想就让人不寒而栗!
亚马逊监视着我们的购物习惯
谷歌监视着我们的网页浏览习惯
微博窃听到了我们心中的TA
而facebook似乎什么都知道,包括我们的社交关系网
我们时刻暴露在第三只眼下(政府除外)。



鉴于此,维克托也建议完善相关司法,制定更完整的隐私保护政策、反垄断。

值得注意的是,大数据给我们提供的不是最终答案,而是参考答案,我们不要过分信任、依赖数据给出的结果。假如一切都可以被预测,而且很精确,而我们想当然的去相信,放弃选择的权利,也会不为结果承担责任,那我们离变成机器人就不远了,人工智能控制人类也并非臆想!

而乐观的人们则会认为一个更美好的未来在像我们招手:

善用佳软曾描述过手机未来可能达到的一个情景:某天你散步到某个地方,手机助手突然提醒你“主人,我发现你散步附近有个零售店,您2月前跟某人邮件中提到过想给他买个礼物,这儿刚好有而且很便宜,并且跟您的日程不冲突,到那里需要20分钟而您30分钟后才有个会议。”


二、应用--无人驾驶汽车、了解自己/情侣、制造完美女/男神

以下为收集内容

五星推荐

1.冬吴相对论:数字化人生

http://www.ximalaya.com/1000577/sound/412418?from_platform=weixin
【构建一个机器的你】模拟你的知识体系、行为习惯:通过拟合你在社交网络的发言、及其它信息。模拟声音:整合微信里的语音。模拟外貌:通过你发的照片等。将这些东西“导入”到一个机器,你在另一个地方被重生。它知道你所有的所有,宛如镜像孪生。
可以看电影黑镜2。

2.无人驾驶汽车

汽车若能交流 车祸或可避免
http://v.youku.com/v_show/id_XNTcyODU4NjQw.html
实现汽车对话以避免车祸,实际也是大数据的利用:通过数据化位置速度(通过摄像头传感器电脑系统)等信息,然后分析并做出预测。信息与机器结合会使人分为自然人、半自然人、机器人吧。现在的美瞳等改变人的外形,以及研究火热的脑机接口以实现通过意念控制机械,人正在与机器越来越多的整合在一起。

谷歌无人驾驶汽车
http://mp.weixin.qq.com/s?__biz=MjM5NzM5ODU2MA==&mid=200295774&idx=4&sn=6c2102446d434291c013d9f35a33482e&scene=1#rd
什么时候无人驾驶汽车成片的出现在杭州就好了[偷笑][偷笑]或者不用成片,就是有些地方会放着(比如某个山洞某个工厂),嗯,某些方式(某个app,某个电话或者直接与微信集合,或者快的打车,打的车都变成无人驾驶车)可以把他叫过来,然后用完之后他自己回到原来的地方。[傲慢][傲慢]这样社会多美好呀!还可以叫个车,让他把东西/人送到某个地方,就不是为自己叫车而是为他人叫……

无人驾驶汽车的价值不仅仅在减少交通事故;便利人们出行。
还能使快递24h畅通……或许还有很多行业被颠覆。。


如果视野更开阔点,数据或许是实现人与机器交流的语言,,数据能挖掘我们不知道的一面,但也不要全迷信数据,将活生生的、复杂的人等同于毫无生命的一堆数据或机器就不好玩了。。

量化自我,一场二十年前无法想象的运动
http://www.36kr.com/p/204479.html#wechat_redirect

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容