数据结构之B-树、B+树、B*树的理解与学习

前面写了好几篇关于二叉树的学习和研究,有兴趣的同学可以看看,温故而知新,可以对比下,B树与二叉树的区别,能够解决那些问题:

赫夫曼树

https://www.jianshu.com/p/3ef0e10400a6

平衡二叉树

https://www.jianshu.com/p/f556f7fa6f35

二叉排序树整理与学习
https://www.jianshu.com/p/ad82541c577e

今天开始研究B树,同理,在研究B树之前,我们还可以继续分析一下,关于二叉树存在的问题,B树就是为了进一步解决二叉树存在的问题的。

二叉树的操作效率较高,但是也存在问题, 请看下面的二叉树


二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如1亿), 就存在如下问题:

问题1:在构建二叉树时,需要多次进行i/o操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,速度有影响

问题2:节点海量,也会造成二叉树的高度很大,会降低操作速度.

多叉树

在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉树(multiway tree),其实就是B树。

后面我们讲解的2-3树,2-3-4树就是多叉树,多叉树通过重新组织节点,减少树的高度,能对二叉树进行优化。

举例说明(下面2-3树就是一颗多叉树)

B树

B树通过重新组织节点,降低树的高度,并且减少i/o读写次数来提升效率

如图B树通过重新组织节点, 降低了树的高度.

文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为4k),这样每个节点只需要一次I/O就可以完全载入。

将树的度M设置为1024,在600亿个元素中最多只需要4次I/O操作就可以读取到想要的元素,B树(B+)广泛应用于文件存储系统以及数据库系统中。

2-3树


2-3树是最简单的B树结构, 具有如下特点:

2-3树的所有叶子节点都在同一层.(只要是B树都满足这个条件)
有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点.
2-3树是由二节点和三节点构成的树。

2-3树应用案例

将数列{16, 24, 12, 32, 14, 26, 34, 10, 8, 28, 38, 20} 构建成2-3树,并保证数据插入的�大小顺序。(演示一下构建2-3树的过程.)

插入规则:
2-3树的所有叶子节点都在同一层.(只要是B树都满足这个条件)
有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点。

当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,拆后仍然需要满足上面3个条件。

对于三节点的子树的值大小仍然遵守(BST 二叉排序树)的规则

除了23树,还有234树等,概念和23树类似,也是一种B树。 如图:

B树、B+树和B*树

B树的介绍

B-tree树即B树,B即Balanced,平衡的意思。有人把B-tree翻译成B-树,容易让人�产生误解。会以为B-树是一种树,而B树又是另一种树。实际上,B-tree就是指的B树。

B树的介绍

前面已经介绍了2-3树和2-3-4树,他们就是B树(英语:B-tree 也写成B-树),这里我们再做一个说明,我们在学习Mysql时,经常听到说某种类型的索引是基于B树或者B+树的,如图:

B树的说明:
B树的阶:节点的最多子节点个数。比如2-3树的阶是3,2-3-4树的阶是4

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点

关键字集合分布在整颗树中,即叶子节点和非叶子节点都存放数据.搜索有可能在非叶子结点结束其搜索性能等价于在关键字全集内做一次二分查找。

B+树的介绍

B+树是B树的变体,也是一种多路搜索树。

B+树的说明:

B+树的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找

所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)恰好是有序的。不可能在非叶子结点命中

非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层
更适合文件索引系统

B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然.

B*树的介绍

B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针。

B*树的说明:

B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为2/3,而B+树的块的最低使用率为B+树的1/2。

从第1个特点我们可以看出,B*树分配新结点的概率比B+树要低,空间使用率更高

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • 目录 1、什么是树 2、相关术语 3、二叉树 3.1、二叉树的类型 3.2、二叉树的性质 3.3、二叉树的结构 3...
    我哈啊哈啊哈阅读 2,548评论 0 10
  • 主要知识点: 树的定义及常用术语 树的存储表示 二叉树、满二叉树和完成二叉树的定义 二叉树的遍历此操作实现 哈夫曼...
    JiaJianHuang阅读 844评论 0 1
  • 树是非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。 使用树结构存储的集合 {A,B,C,D,E,F,...
    飞扬code阅读 4,750评论 0 2
  • 二叉树与B树 1.1二叉树的操作效率较高,但是也存在问题, 请看下面的二叉树 二叉树需要加载到内存的,如果二叉树的...
    smallmartial阅读 656评论 0 0
  • 有时侯,在山脚下看山与在山中看山,风景是不一样的,经过许多道的盘山公路,才明白山的高度,山的伟岸,以及从山中俯视地...
    余人的触角阅读 612评论 3 2