《剑指offer》(十)-矩阵覆盖(java)

矩阵覆盖

考点:递归

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

代码格式要求

public class Solution {
    public int RectCover(int target) {

    }
}

解题一-递归

1.思路

涂掉最后一级矩形的时候,是用什么方式完成的?

链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6?answerType=1&f=discussion
来源:牛客网

  • n = 1 的时候
    • 只能横着覆盖,一种
  • n = 2 的时候
    • 可以横着和竖着覆盖,两种
  • n = 3 的时候
    • 第三级横着覆盖,用了一级,剩下 n = 2,有两种覆盖方法
    • 第三季竖着覆盖,用了两级,剩下 n = 1,有一种覆盖方法
    • 总共有 3 种
  • n = 4 的时候
    • 第 4 级横着覆盖,用了一级,剩下 n = 3,有三种覆盖方法
    • 第 4 级竖着覆盖,用了两级,剩下 n = 2,有两种覆盖方法
    • 总共有 5 种方法
  • n = n 的时候
    • 第 n 级横着覆盖,用了一级,剩下 n = n - 1,所以关注第 n - 1 种有几种覆盖方法
    • 第 n 级竖着覆盖,用了两级,剩下 n = n - 2,所以关注第 n - 2 种有几种覆盖方法
    • 总和为两种情况的总和

从 n = 1 到 n = 4 的示意图如下:


image.png

所以回答上面的问题,涂掉最后一级矩阵的时候,可以选择使用横向完成,也可以使用竖向完成,横向涂剩下 n - 1 阶,竖向涂剩下 n - 2 阶
2.代码
1.思路

public class Solution {
    public int RectCover(int target) {
        if (target <= 2){
            return target;
        }
        int pre1 = 2; // n 最后使用一块,剩下 n-1 块的写法
        int pre2 = 1; // n 最后使用两块,剩下 n-2 块的写法
        for (int i = 3; i <= target; i++){
            int cur = pre1 + pre2;
            pre2 = pre1;
            pre1 = cur;
        }
        return pre1; //相对于 n+1 块来说,第 n 种的方法
    }
}

解题二-斐波那契数列

f(n)=f(n-1)+f(n-2)

1.思路
关注 n - 1 与 n - 2 时的涂法有几种,这就是斐波那契数列,直接带入公式
2.代码

public int RectCover(int target) {
        if(target <= 0) return 1;
        if(target == 1 || target == 2) return target;
        return RectCover(target - 1) + RectCover(target - 2);
    }

解题三-动态规划

1.思路
利用动态规划,一共有n列,若从左向右放小矩形,有两种放置方式:
第一种:横着放,即占用两列。此时第二行的前两个空格只能横着放,所有,总的放置次数变为1+num(2(n-2)),其中2(n-2)代表两行n-2列的矩阵。
第二种:竖着放,此时有1+num(2*(n-1)),因此 利用动态规划求解

image.png

2.代码

public class Solution {
    public int RectCover(int target) {
        int [] num = new int[target+1];
        if(target<=2){
            return target;
        }
        num[0]=0;
        num[1]=1;
        num[2]=2;
        for(int i=3;i<=target;i++){
            num[i] = num[i-1]+num[i-2];
        }
        return num[target];
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容

  • 题目描述 我们可以用 2 * 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个 2 * 1的小矩形无重叠地覆盖一...
    云胡同学阅读 417评论 0 0
  • 前言 2. 实现 Singleton 3. 数组中重复的数字 4. 二维数组中的查找 5. 替换空格 6. 从尾到...
    Observer_____阅读 2,924评论 0 1
  • 二维数据中的查找 题目描述 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排...
    EarthChen阅读 1,195评论 0 1
  • 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多...
    纳萨利克阅读 126评论 0 0
  • 求斐波拉契数列的第n项 写一个函数,输入n,求斐波拉契数列的第n项,斐波拉契数列的定义如下: 一般解法 这是我们常...
    Longshihua阅读 648评论 0 2