监督学习,非监督学习,半监督学习三者的区别是什么,个举出一个最有代表性的算法?

监督(supervised)=标签(label),是否有监督,就是输入数据(input)是否有标签,有标签则为有监督学习,没标签则为无监督学习。至于半监督学习,就是一半(一点点)数据有标签,一半(极其巨大)数据没标签。——简单一句话答案(正经回答在最后)。

首先从学习(learn)这个概念开始解释,所谓学习,就是闻一知十。

例如学数学,小学老师会先给大量训练,让人学会解题方法。之后面对考试的时候出现的绝对不同的题目,也能回答。机器学习也是一样,我们能不能用已经做过的题,来推断没做过的题呢?

二年级数学口算题

有监督学习可以理解成已经打了标签(有答案)的数学题目,无监督学习就是没有答案的题目。

举例个简单的例子说明:

有监督学习:1 X 1 + 1 = ?

AI: 等于 1 ?

有监督学习:错! 等于2 !记住!

(AI调整中)

第二次:

有监督学习:1 X 1 + 1 = ?

AI: 等于 2 !

无监督学习:1 X 1 + 1 = ?

AI: 等于 1 ?

无监督学习:3 X 4 + 8 =?

AI: 等于 0 ?

。。。。。。。。。

AI:我发现了,数学题都是先乘法后加法!

半监督学习:1 X 1 + 1 = ?

AI: 等于 1 ?

半监督学习:错! 等于2 !记住!

(AI调整中)

第二次:

半监督学习:1 X 1 + 1 = ?

AI: 等于 2 !

半监督学习:恭喜你学会了,现在 3 X 4 + 8 = ?

AI: 等于 2 !

半监督学习:好的,我帮你标签(lable)一下,3 X 4 + 8 = 2

正经回答:

a) 监督学习是最常见的一种机器学习,它的训练数据是有标签的,训练目标是能够给新数据(测试数据)以正确的标签。

例如,想让AI知道什么是猫什么是狗,一开始我们先将一些猫的图片和狗的图片(带标签)一起进行训练,学习模型不断捕捉这些图片与标签间的联系进行自我调整和完善,然后我们给一些不带标签的新图片,让该AI来猜猜这些图片是猫还是狗。

经典的算法:分类算法

b) 无监督学习常常被用于数据挖掘,用于在大量无标签数据中发现些什么。它的训练数据是无标签的,训练目标是能对观察值进行分类或者区分等。相对于监督学习,无监督学习使用的是没有标签的数据。机器会主动学习数据的特征,并将它们分为若干类别,相当于形成「未知的标签」。

例如无监督学习应该能在不给任何额外提示的情况下,仅依据所有“猫”的图片的特征,将“猫”的图片从大量的各种各样的图片中将区分出来。

经典的算法:聚类算法

c)半监督学习介于两者之间。隐藏在半监督学习下的基本规律在于:数据的分布必然不是完全随机的,通过一些有标签数据的局部特征,以及更多没标签数据的整体分布,就可以得到可以接受甚至是非常好的分类结果。(此处大量忽略细节)

例如:很多实际问题中,只有少量的带有标记的数据,因为对数据进行标记的代价有时很高。比如找到照片并给照片上的猫标上标签(lable)很麻烦,但是猫的各种姿势的猫片网上一搜一大堆。那我们能不能手动标记一部分猫片,然后让AI学习训练,然后再剩下没标记的猫片上做实验呢?

经典算法:太多不举例了

参考文献: [1] 吴恩达在Coursera上的机器学习课程。 [2]西瓜书 [3]知乎和CSDN各种回答

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容