20170720_DE

<h1 align = "center">Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces</h1>

by Rainer Storn and Kenneth Price TR-95-012
March 1995

abstract

A new heuristic approach for minimizing possibly nonlinear and non differentiable continuous space functions is presented. By means of an extensive testbed, which includes the De Jong functions, it will be demonstrated that the new method converges faster and with more certainty than Adaptive Simulated Annealing as well as the Annealed Nelder&Mead approach, both of which have a reputation for being very powerful. The new method requires few control variables, is robust, easy to use and lends itself very well to parallel computation.


这是一个求解连续空间非线性不可导函数最小值的新的启发式解法。通过广泛的实验,包括使用De Jong 函数测试,可以证实新的方法比起被广泛认为很有效的自适应模拟退火和Nelder&Mead退火方法 ,收敛更快并且更准确。新的方法几乎不需要控制变量,适应性强,使用简便并且适于并行计算。


De Jong函数见http://www.geatbx.com/docu/fcnindex-01.html
The simplest test function is De Jong's function 1. It is also known as sphere model. It is continuos, convex and unimodal.
function definition:


f1(x)=sum(x(i)^2), i=1:n, -5.12<=x(i)<=5.12.
global minimum:
f(x)=0, x(i)=0, i=1:n.


introduction

Problems which involve global optimization over continuous spaces are ubiquitous throughout the scientific community. In general, the task is to optimize certain properties of a system by pertinently choosing the system parameters. For convenience, a system's parameters are usually represented as a vector. The standard approach to an optimization problem begins by designing an objective function that can model the problem's objectives while incorporating any constraints. Especially in the circuit design community, methods are in use which do not need an objective function [1], [2], [3]. Although these methods can make formulating a problem simpler, they are usually inferior to techniques which make full use of an objective function. Consequently, we restrict ourselves to optimization methods which fully use the objective function. In most cases, the objective function is designed to transform the optimization problem into a minimization task. To this end, we will limit our investigation in the following to minimization problems.


连续空间全局优化的问题在整个学术界无所不在。任务通常是通过选择恰当参数优化系统特定的特征。为了方便,系统的参数通常被表示为一个向量。解决优化问题的标准方法往往是在问题约束内对目标问题建模设计目标函数。尤其是在环形群体?,解决问题不需要目标函数。即使这些方法可以使得建模一个问题简单,他们比起充分利用目标函数的方法要低劣。因此,我们采用充分利用目标函数的优化方法。在大多数情况下,优化函数能把优化问题转化为最小化问题。因此,我们会把我们的探究转为最小化问题。


When the objective function is nonlinear and non differentiable, direct search approaches are the methods of choice. The best known of these are the algorithms by Nelder&Mead [4], by Hooke&Jeeves [4], genetic algorithms [5], and evolutionary algorithms [6], [7] with the latter being truly continuous counterparts of genetic algorithms. At the heart of every direct search method is a strategy that generates variations of the parameter vectors. Once a variation is generated, a decision must be made whether or not to accept the newly derived parameters. All basic direct search methods use the greedy criterion to make this decision. Under the greedy criterion, a new parameter vector is accepted if and only if it reduces the value of the objective function. Although the greedy decision process converges fairly fast, it runs the risk of becoming trapped by local minimum. Inherently parallel search techniques like genetic and evolutionary algorithms have some built-in safeguards to forestall misconvergence.


当目标函数是非线性并且不可导,直接搜索法是最好的方法。这其中最让我们熟知的是Nelder&Mead的算法,Hooke&Jeeves的算法,遗传算法和演化算法,演化算法是遗传算法的后来发展的对应物。所有直接搜索法的核心都是从参数向量中产生变异。一旦变异产生,必须要决定是否接受这个新的产生的参数。所有的基础的直接搜索法都采用贪心算法做这个决定。在贪心算法下,新的参数向量只有在减少目标函数值时才会被采纳。即使贪心决策过程收敛迅速,它存在被存在局部最小的风险。实际上相似的搜索策略如遗传算法和演化算法有很多内建机制预防错误收敛。


By running several vectors simultaneously, superior parameter configurations can help other vectors escape local minima. Another method which can extricate a parameter vector from a local minimum is Simulated Annealing [8], [9], [10]. Annealing relaxes the greedy criterion by occasionally permitting an uphill move. Such moves potentially allow a parameter vector to climb out of a local minimum. As the number of iterations increases, the probability of accepting an uphill move decreases. In the long run, this leads to the greedy criterion. While all direct search methods lend themselves to annealing, it has mostly been used just for the Random Walk, which itself is the simplest case of an evolutionary algorithm [6]. Nevertheless, attempts have been made to anneal other direct searches like the method of Nelder&Mead [10] and genetic algorithms [8], [11].


通过同时处理多组向量,好的参数配置可以更好的帮助其他向量逃离局部最小。其他可以帮助参数向量逃离局部最小的模拟退火。退火通过偶然允许目标函数值扩大的移动放松了贪心策略。这样的移动潜在的允许参数向量离开局部最小。随着迭代次数增加,接受上行移动的概率下降。长期来看,这趋近于贪心策略。当所有直接搜索都参与模拟退火,他们几乎可以看做随机游走,这是最简单的进化算法。然而,也有对其他直接搜索模拟退火的尝试,如Nelder&Mead和遗传算法。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容

  • 晨读书目:《买买买时代的行为经济学》 ☞关键词:『损失厌恶心理』 『聚光灯效应』 ...
    万菠萝阅读 177评论 22 17
  • 湖畔松间道,微风拂六出。 寒夜未央急展俏,一点北国素。 也拟争芳意,却压墙角竹。 闺楼佳人朝梳头,消失...
    茶诗阅读 178评论 0 0
  • 做营销策划的小编居住在一个大型社区,社区内有一个针对幼儿和低年级学生招生的美术班,因为方便,小编的孩子从幼儿园起就...
    沙里淘金阅读 12,564评论 1 12
  • 此刻的我在婚礼前一天上午继续在诊所输液昨晚睡前静静想在在出嫁离开以生活了近30年的家 要写些什么 来自外界的各种...
    daee3df6c4e8阅读 152评论 0 0
  • 当风筝脱了线, 当钻石再也不会耀眼, 当鱼离开了大海, 当最后一片花瓣凋零, 当你已经离去。 我还会天真的以为, ...
    Angely_Sufi阅读 429评论 0 1