基础流程(cellranger)(细胞管理员)
cellranger 数据拆分
cellranger mkfastq可用于将单细胞测序获得的 BCL 文件拆分为可以识别的 fastq 测序数据
cellranger makefastq --run=[ ] --samplesheet=[sample.csv] --jobmode=local --localcores=20 --localmem=80
-–run :是下机数据 BCL 所在的路径;
-–samplesheet :样品信息列表--共三列(lane id ,sample name ,index name)
注意要控制好核心数和内存数
运行产出结果存在于 out 目录中
cellranger 数据统计
cellranger count是 cellranger 最主要也是最重要的功能:完成细胞和基因的定量,也就是产生了我们用来做各种分析的基因表达矩阵。
cellranger count -–id=sample345 -–transcriptome=/opt/refdata-cellranger-GRCh38-1.2.0/GRCh38 -–fastqs=/home/jdoe/runs/HAWT7ADXX/outs/fastq_path -–indices=SI-3A-A1 –-cells=1000
id :产生的结果都在这个文件中,可以取几号样品(如 sample345);
fastqs :由 cellranger mkfastq 产生的 fastqs 文件夹所在的路径;fastqs :由 cellranger mkfastq 产生的 fastqs 文件夹所在的路径;
indices:sample index:SI-3A-A1;
transcriptome:参考转录组文件路径;
cells:预期回复的细胞数;
下游分析
cellranger count 计算的结果只能作为错略观测的结果,如果需要进一步分析聚类细胞,还需要进行下游分析,这里使用官方推荐 R 包(Seurat 3.0)
软件安装
install.packages('devtools')
devtools::install_github(repo = 'satijalab/seurat', ref = 'release/3.0')
library(Seurat)
生成 Seruat 对象
library(dplyr)
library(Seurat)
#下载PBMC数据集
pbmc.data <- Read10X(data.dir = "../data/pbmc3k/filtered_gene_bc_matrices/hg19/")
#使用原始数据(非规范化数据)初始化Seurat对象
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
pbmc
这里读取的是单细胞 count 结果中的矩阵目录;
在对象生成的过程中,做了初步的过滤;
留下所有在>=3 个细胞中表达的基因 min.cells = 3;
留下所有检测到>=200 个基因的细胞 min.genes = 200。
(为了除去一些质量差的细胞)(为了除去一些质量差的细胞)
标准预处理流程
使用原始数据(非规范化数据)初始化Seurat对象。操作符可以向对象元数据添加列。这是一个伟大的地方储存QC统计。
pbmc[["percent.mt"]] <- PercentageFeatureSet(object = pbmc, pattern = "^MT-")
这一步 mit-开头的为线粒体基因,这里将其进行标记并统计其分布频率
# 将QC指标可视化为小提琴图
VlnPlot(object = pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
对 pbmc 对象做小提琴图,分别为基因数,细胞数和线粒体占比.
接下来,根据图片中基因数和线粒体数,分别设置过滤参数,这里基因数 200-2500,线粒体百分比为小于 5%
pbmc <- subset(x = pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)
数据标准化
pbmc <- NormalizeData(object = pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
pbmc <- NormalizeData(object = pbmc)
鉴定高度变化基因
pbmc <- FindVariableFeatures(object = pbmc, selection.method = "vst", nfeatures = 2000)
#找出10个变化最大的基因
top10 <- head(x = VariableFeatures(object = pbmc), 10)
绘制 variable features 的带有和不带有标签的图形
plot1 <- VariableFeaturePlot(object = pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
CombinePlots(plots = list(plot1, plot2))
数据归一化
all.genes <- rownames(x = pbmc)
pbmc <- ScaleData(object = pbmc, features = all.genes)
线性降维
pbmc <- RunPCA(object = pbmc, features = VariableFeatures(object = pbmc))
这里有多种方法展示 pca 结果,本文采用最简单的方法
DimPlot(object = pbmc, reduction = "pca")
鉴定数据集的可用维度
pbmc <- JackStraw(object = pbmc, num.replicate = 100)
pbmc <- ScoreJackStraw(object = pbmc, dims = 1:20)
JackStrawPlot(object = pbmc, dims = 1:15)
虚线以上的为可用维度,你也可以调整 dims 参数,画出所有 pca 查看
细胞聚类
pbmc <- FindNeighbors(object = pbmc, dims = 1:10)
pbmc <- FindClusters(object = pbmc, resolution = 0.5)
这里的 dims 为上一步计算所用的维度数,而 resolution 参数控制聚类的数目,这里用默认就好
执行非线性降维
这里注意,这一步聚类有两种聚类方法(umap/tSNE),两种方法都可以使用,但不要混用,这样,后面的结算结果会将先前的聚类覆盖掉,只能保留一个.
本文采用基于图论的聚类方法
pbmc <- RunUMAP(object = pbmc, dims = 1:10)
DimPlot(object = pbmc, reduction = "umap")
完成聚类后,一定要记住保存数据,不然重新计算可要头疼了
saveRDS(pbmc, file = "../output/pbmc_tutorial.rds")
如下为TSNE聚类
TSNE聚类分析
pcSelect=20
pbmc <- FindNeighbors(object = pbmc, dims = 1:pcSelect) #计算邻接距离
pbmc <- FindClusters(object = pbmc, resolution = 0.5) #对细胞分组,优化标准模块化
pbmc <- RunTSNE(object = pbmc, dims = 1:pcSelect) #TSNE聚类
pdf(file="06.TSNE.pdf",width=6.5,height=6)
TSNEPlot(object = pbmc, do.label = TRUE, pt.size = 2, label = TRUE) #TSNE可视化
dev.off()
write.table(pbmc$seurat_clusters,file="06.tsneCluster.txt",quote=F,sep="\t",col.names=F)
寻找每个聚类中显著表达的基因
cluster1.markers <- FindMarkers(object = pbmc, ident.1 = 1, min.pct = 0.25)
head(x = cluster1.markers, n = 5)
这样是寻找单个聚类中的显著基因
cluster5.markers <- FindMarkers(object = pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)
head(x = cluster5.markers, n = 5)
这样寻找所有聚类中显著基因,计算速度很慢,需要等待.find markers for every cluster compared to all remaining cells, report only the positive ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
有多种方法统计基因的显著性
FeaturePlot(object = pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ",
"PPBP", "CD8A"))
top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
DoHeatmap(object = pbmc, features = top10$gene) + NoLegend()
针对前十个基因做热图。
寻找基因 marker 并对细胞类型进行注释
全自动细胞类型注释
SingleR:一个全自动细胞注释的 R 包,用法很简单
软件安装
devtools::install_github('dviraran/SingleR')
这可能需要很长时间,尽管主要是因为Seurat的安装。
创建 SingleR 对象
官方有多种方法创建该对象,参考SingleR - create object
我们这里由于已经具有了 Seurat 对象,所以可以采用直接转化的方法
library(SingleR)
singler = CreateSinglerObject(counts, annot = NULL, project.name, min.genes = 0,
technology = "10X", species = "Human", citation = "",
ref.list = list(), normalize.gene.length = F, variable.genes = "de",
fine.tune = T, do.signatures = T, clusters = NULL, do.main.types = T,
reduce.file.size = T, numCores = SingleR.numCores)
singler$seurat = seurat.object # (optional)
singler$meta.data$orig.ident = seurat.object@meta.data$orig.ident # the original identities, if not supplied in 'annot'
if using Seurat v3.0 and over use:
singler$meta.data$xy = seurat.object@reductions$tsne@cell.embeddings # the tSNE coordinates
singler$meta.data$clusters = seurat.object@active.ident # the Seurat clusters (if 'clusters' not provided)
对于S4对象,需要手动寻找数据
counts<-seurat.object@assays$RNA@counts
clusters<-seurat.object@meta.data$seurat_clusters
fine.tune 如果设置为 T,会消耗大量时间,这一步是对数据小差异的进一步细化,可以不计算
do.signatures 这个也会消耗大量时间,做单细胞基因集丰度分析,可以先设置为 F
对象载入完成就可以保存好去官方网站进行可视化分析了
singler.new = convertSingleR2Browser(singler)
saveRDS(singler.new,file=paste0(singler.new@project.name,'.rds')
伪时间分析
伪时间分析建议采用 monocle3.0 软件
软件安装
source("http://bioconductor.org/biocLite.R")
biocLite("monocle")
devtools::install_github("cole-trapnell-lab/DDRTree", ref="simple-ppt-like")
devtools::install_github("cole-trapnell-lab/L1-graph")
这一步在Seurat3.0的安装过程中已经安装过的就不必安装了
install.packages("reticulate")
library(reticulate)
py_install('umap-learn', pip = T, pip_ignore_installed = T) # Ensure the latest version of UMAP is installed
py_install("louvain")
devtools::install_github("cole-trapnell-lab/monocle-release", ref="monocle3_alpha")
伪时间分析
library(Seurat)
library(monocle)
Seurat.obj<-readRDS("**.rds")
如果使用的是seurat2.4版本,可以使用monocle的importCDS命令直接导入,如果是3.0版本,需要进行如下手动导入数据
这里采用的是官方教程中所需要的三个文件,细胞矩阵,细胞注释表和基因注释表表
data <- as(as.matrix(Seurat.obj@assays$RNA@data), 'sparseMatrix')
pd<-new("AnnotatedDataFrame", data = Seurat.obj@meta.data)
fd<-new("AnnotatedDataFrame", data = data.frame(gene_short_name = row.names(data), row.names = row.names(data)))
cds <- newCellDataSet(data, phenoData = pd, featureData = fd)
给其中一列数据重命名
names(pData(cds))[names(pData(cds))=="RNA_snn_res.0.5"]="Cluster"
添加细胞聚类数据
pData(cds)$cell_type2 <- plyr::revalue(as.character(pData(cds)$Cluster),c("0" = 'Fibroblasts',"1" = 'Fibroblasts',"2" = 'Fibroblasts',"3" = 'Fibroblasts',"4" = 'Fibroblasts',"5" = 'NK',"6" = 'Fibroblasts',"7" = 'Macrophage',"8" = 'NK',"9" = 'Macrophage',"10" = 'EC',"11" = 'Fibroblasts',"12" = 'EC'))
cell_type_color <- c("Fibroblasts" = "#E088B8","NK" = "#46C7EF","Macrophage" = "#EFAD1E","EC" = "#8CB3DF")
伪时间分析流程
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
cds <- preprocessCDS(cds, num_dim = 20)
cds <- reduceDimension(cds, reduction_method = 'UMAP')
cds <- partitionCells(cds)
cds <- learnGraph(cds, RGE_method = 'SimplePPT')
plot_cell_trajectory(cds,color_by = "cell_type2") + scale_color_manual(values = cell_type_color)
选择特定细胞进行伪时间分析
get_correct_root_state <- function(cds, cell_phenotype, root_type){
cell_ids <- which(pData(cds)[, cell_phenotype] == root_type)
closest_vertex <-cds@auxOrderingData[[cds@rge_method]]$pr_graph_cell_proj_closest_vertex
closest_vertex <- as.matrix(closest_vertex[colnames(cds), ])
root_pr_nodes <-V(cds@minSpanningTree)$name[as.numeric(names(which.max(table(closest_vertex[cell_ids,]))))]
}
MPP_node_ids = get_correct_root_state(cds,cell_phenotype ='cell_type2', 'Fibroblasts')
cds <- orderCells(cds, root_pr_nodes = MPP_node_ids)
plot_cell_trajectory(cds)
伪时间分析
特定细胞分析