数据结构之图的广度优先遍历与深度优先遍历

概述

图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。

基本常用概念

  1. 顶点(vertex)
  1. 边(edge)

  2. 路径

路径: 比如从 D -> C 的路径有

  1. D->B->C
  2. D->A->B->C
  1. 无向图(右图)

无向图: 顶点之间的连接没有方向,比如A-B,即可以是 A-> B 也可以 B->A .

  1. 有向图
image
  1. 带权图
image

表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1....n个点。

image

邻接表

邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

image

代码实现图的构建

public class Graph {

    private ArrayList<String> vertexList; //存储顶点集合
    private int[][] edges; //存储图对应的邻结矩阵
    private int numOfEdges; //表示边的数目
    //定义给数组boolean[], 记录某个结点是否被访问
    private boolean[] isVisited;
    
    public static void main(String[] args) {
        //测试一把图是否创建ok
        int n = 8;  //结点的个数
        //String Vertexs[] = {"A", "B", "C", "D", "E"};
        String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
        
        //创建图对象
        Graph graph = new Graph(n);
        //循环的添加顶点
        for(String vertex: Vertexs) {
            graph.insertVertex(vertex);
        }
        
        //添加边
        //A-B A-C B-C B-D B-E 
//      graph.insertEdge(0, 1, 1); // A-B
//      graph.insertEdge(0, 2, 1); // 
//      graph.insertEdge(1, 2, 1); // 
//      graph.insertEdge(1, 3, 1); // 
//      graph.insertEdge(1, 4, 1); // 
        
        //更新边的关系
        graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);

        //显示一把邻结矩阵
        graph.showGraph();
}
    
    //构造器
    public Graph(int n) {
        //初始化矩阵和vertexList
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOfEdges = 0;
        
    }
    
    //图中常用的方法
    //返回结点的个数
    public int getNumOfVertex() {
        return vertexList.size();
    }
    //显示图对应的矩阵
    public void showGraph() {
        for(int[] link : edges) {
            System.err.println(Arrays.toString(link));
        }
    }
    //得到边的数目
    public int getNumOfEdges() {
        return numOfEdges;
    }
    //返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
    public String getValueByIndex(int i) {
        return vertexList.get(i);
    }
    //返回v1和v2的权值
    public int getWeight(int v1, int v2) {
        return edges[v1][v2];
    }
    //插入结点
    public void insertVertex(String vertex) {
        vertexList.add(vertex);
    }
    //添加边
    /**
     * 
     * @param v1 表示点的下标即使第几个顶点  "A"-"B" "A"->0 "B"->1
     * @param v2 第二个顶点对应的下标
     * @param weight 表示 
     */
    public void insertEdge(int v1, int v2, int weight) {
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }
}

深度优先遍历

图遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历

深度优先遍历基本思想

图的深度优先搜索(Depth First Search) 。

深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。显然,深度优先搜索是一个递归的过程

算法步骤

深度优先遍历算法步骤

访问初始结点v,并标记结点v为已访问。

查找结点v的第一个邻接结点w。

若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。

若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

image

代码实现

要求:
对下图进行深度优先搜索, 从A 开始遍历

image
//得到第一个邻接结点的下标 w 
    /**
     * 
     * @param index 
     * @return 如果存在就返回对应的下标,否则返回-1
     */
    public int getFirstNeighbor(int index) {
        for(int j = 0; j < vertexList.size(); j++) {
            if(edges[index][j] > 0) {
                return j;
            }
        }
        return -1;
    }
    //根据前一个邻接结点的下标来获取下一个邻接结点
    public int getNextNeighbor(int v1, int v2) {
        for(int j = v2 + 1; j < vertexList.size(); j++) {
            if(edges[v1][j] > 0) {
                return j;
            }
        }
        return -1;
    }
    
    //深度优先遍历算法
    //i 第一次就是 0
    private void dfs(boolean[] isVisited, int i) {
        //首先我们访问该结点,输出
        System.out.print(getValueByIndex(i) + "->");
        //将结点设置为已经访问
        isVisited[i] = true;
        //查找结点i的第一个邻接结点w
        int w = getFirstNeighbor(i);
        while(w != -1) {//说明有
            if(!isVisited[w]) {
                dfs(isVisited, w);
            }
            //如果w结点已经被访问过
            w = getNextNeighbor(i, w);
        }
    }
    
    //对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
    public void dfs() {
        isVisited = new boolean[vertexList.size()];
        //遍历所有的结点,进行dfs[回溯]
        for(int i = 0; i < getNumOfVertex(); i++) {
            if(!isVisited[i]) {
                dfs(isVisited, i);
            }
        }
    }

测试代码

private ArrayList<String> vertexList; //存储顶点集合
    private int[][] edges; //存储图对应的邻结矩阵
    private int numOfEdges; //表示边的数目
    //定义给数组boolean[], 记录某个结点是否被访问
    private boolean[] isVisited;
    
    public static void main(String[] args) {
        //测试一把图是否创建ok
        int n = 8;  //结点的个数
        //String Vertexs[] = {"A", "B", "C", "D", "E"};
        String Vertexs[] = {"1", "2", "3", "4", "5", "6", "7", "8"};
        
        //创建图对象
        Graph graph = new Graph(n);
        //循环的添加顶点
        for(String vertex: Vertexs) {
            graph.insertVertex(vertex);
        }
        
        //添加边
        //A-B A-C B-C B-D B-E 
//      graph.insertEdge(0, 1, 1); // A-B
//      graph.insertEdge(0, 2, 1); // 
//      graph.insertEdge(1, 2, 1); // 
//      graph.insertEdge(1, 3, 1); // 
//      graph.insertEdge(1, 4, 1); // 
        
        //更新边的关系
        graph.insertEdge(0, 1, 1);
        graph.insertEdge(0, 2, 1);
        graph.insertEdge(1, 3, 1);
        graph.insertEdge(1, 4, 1);
        graph.insertEdge(3, 7, 1);
        graph.insertEdge(4, 7, 1);
        graph.insertEdge(2, 5, 1);
        graph.insertEdge(2, 6, 1);
        graph.insertEdge(5, 6, 1);

        //显示一把邻结矩阵
        graph.showGraph();
        
        //测试一把,我们的dfs遍历是否ok
        System.out.println("深度遍历");
        graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]

结果

image

广度优先遍历

广度优先遍历基本思想

图的广度优先搜索(Broad First Search) 。

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

广度优先遍历算法步骤

访问初始结点v并标记结点v为已访问。

结点v入队列

当队列非空时,继续执行,否则算法结束。

出队列,取得队头结点u。

查找结点u的第一个邻接结点w。

若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

6.1 若结点w尚未被访问,则访问结点w并标记为已访问。

6.2 结点w入队列

6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

代码实现

image
    //对一个结点进行广度优先遍历的方法
    private void bfs(boolean[] isVisited, int i) {
        int u ; // 表示队列的头结点对应下标
        int w ; // 邻接结点w
        //队列,记录结点访问的顺序
        LinkedList queue = new LinkedList();
        //访问结点,输出结点信息
        System.out.print(getValueByIndex(i) + "=>");
        //标记为已访问
        isVisited[i] = true;
        //将结点加入队列
        queue.addLast(i);
        
        while(!queue.isEmpty()) {
            //取出队列的头结点下标
            u = (Integer)queue.removeFirst();
            //得到第一个邻接结点的下标 w 
            w = getFirstNeighbor(u);
            while(w != -1) {//找到
                //是否访问过
                if(!isVisited[w]) {
                    System.out.print(getValueByIndex(w) + "=>");
                    //标记已经访问
                    isVisited[w] = true;
                    //入队
                    queue.addLast(w);
                }
                //以u为前驱点,找w后面的下一个邻结点
                w = getNextNeighbor(u, w); //体现出我们的广度优先
            }
        }
    } 
    
    //遍历所有的结点,都进行广度优先搜索
    public void bfs() {
        isVisited = new boolean[vertexList.size()];
        for(int i = 0; i < getNumOfVertex(); i++) {
            if(!isVisited[i]) {
                bfs(isVisited, i);
            }
        }
    }

测试代码

    System.out.println("广度优先!");
        graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]

结果

image

两种遍历分析

深度优先尽量向纵向遍历,广度优先尽量向横向遍历。

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容