用Excel做回归分析

Excel数据分析工具库是个很强大的工具,可以满足基本的统计分析,这里介绍用Excel数据分析工具库中的回归做回归分析。

本节知识点:

Excel数据分析工具库—回归

线性回归和非线性回归

简单线性回归和多重线性回归


一、什么是回归分析(Regression)

1、定义

确定两种或两种以上变量间相关关系的一种统计分析方法。通过数据间相关性分析的研究,进一步建立自变量(i=1,2,3,…)与因变量Y之间的回归函数关系,即回归分析模型,从而预测数据的发展趋势。

2、分类

按照涉及的变量的多少,分为一元回归和多元回归分析;

按照因变量的多少,可分为简单回归分析和多重回归分析;

按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。


二、线性回归

1、简单线性回归

简单线性回归又叫一元线性回归,即回归模型中只有一个自变量和一个因变量,其回归方程可以表示为:

y=a+bx+\varepsilon

其中,Y表示因变量,x表示自变量,a是 常数,b是斜率,\varepsilon 是随机误差。

2、最小二乘法:

如何确定参数a和b,则要用最小二乘法来实现。通过最小化误差的平方和寻找数据的最佳函数匹配,即使得观测点和估计点的距离的平方和最小。

3、线性回归分析的步骤:

1)、确定自变量和因变量

2)、绘制散点图,确定回归模型类型

3)、估计模型参数,建立回归模型:最小二乘法进行模型参数估计

4)、对回归模型进行检验

5)、利用回归模型进行预测

4、多重线性回归

定义:一个因变量与多个自变量的线性回归问题,是一元线性回归的推广。其回归方程可以写为:

y=\beta _{0} +\beta _{1} x_{1} +...+\beta _{p} x_{p} +\varepsilon

多重线性回归方程中回归系数的估计也是用到最小二乘法


三、用Excel做回归分析

我们研究销售额Y和推广费用X1之间的关系,数据如下:

首先我们用数据分析—相关系数分析计算一下自变量和因变量之间的相关系数为0.95157,为强相关。

绘制散点图如下:

然后,我们用数据分析库里的回归来做分析

注意Y值和X值输入区域,X值是自变量,Y是因变量。

四、线性回归方程的检验

评价回归拟合程度好坏(重要):

1、  先看回归统计表,Multiple R即相关系数R的值,和我们之前做相关分析得到的值一样,大于0.8表示强正相关。

2、  回归统计表中的R Square是R平方值,R平方即R的平方,又可以叫判定系数、拟合优度,取值范围是[0,1],R平方值越大,表示模型拟合的越好。一般大于70%就算拟合的不错,60%以下的就需要修正模型了。这个案例里R平方0.9054,相当不错。

3、  Adjusted R是调整后的R方,这个值是用来修正因自变量个数增加而导致模型拟合效果过高的情况,多用于衡量多重线性回归。

4、  第二张表,方差分析表,df是自由度,SS是平方和,MS是均方,F是F统计量,Significance F是回归方程总体的显著性检验,其中我们主要关注F检验的结果,即Significance F值,F检验主要是检验因变量与自变量之间的线性关系是否显著,用线性模型来描述他们之间的关系是否恰当,越小越显著。这个案例里F值很小,说明因变量与自变量之间显著。

5、  残差是实际值与预测值之间的差,残差图用于回归诊断,回归模型在理想条件下的残差图是服从正态分布的。

6、 第三张表我们重点关注P-value,也就是P值,用来检验回归方程系数的显著性,又叫T检验,T检验看P值,是在显著性水平α(常用取值0.01或0.05)下F的临界值,一般以此来衡量检验结果是否具有显著性,如果P值>0.05,则结果不具有显著的统计学意义,如果0.01

7、 从第三张表的第一列我们可以得到这个回归模型的方程:y=4361.486+1.198017x,此后对于每一个输入的自变量x,都可以根据这个回归方程来预测出因变量Y。

这里简单总结了一下什么是回归分析,如何用excel做线性回归分析,以及如何评价回归方程拟合程度的好坏。入门很简单,精通还很遥远,我们都在学习中。


注:本文首发于CSDN,博主:data_cola

@文章属原创,转载请联系作者

@作者:虾壳,在数据分析的道路上努力奔跑

@微信公众号:可乐的数据分析之路

@我的知乎专栏 :可乐的数据分析之路

可乐的数据分析之路​zhuanlan.zhihu.com

往期文章精选:

如何在业余时自学数据分析?

SQL基础快速入门

用Excel做直方图(2):频率分布直方图

用Excel做直方图(1):随机数发生器

用Excel做控制图

用Excel做排列图

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容