单细胞分析实录(8): 展示marker基因的4种图形(一)

今天的内容讲讲单细胞文章中经常出现的展示细胞marker的图:tsne/umap图、热图、堆叠小提琴图、气泡图,每个图我都会用两种方法绘制。

使用的数据来自文献:Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. 去年7月发表在Cell Research上的关于鼻咽癌的文章,数据下载:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150430

髓系细胞数量相对少一些,为了方便演示,选它作为例子。

library(Seurat)
library(tidyverse)
library(harmony)
Myeloid=read.table("Myeloid_mat.txt",header = T,row.names = 1,sep = "\t",stringsAsFactors = F)
Myeloid_anno=read.table("Myeloid_anno.txt",header = T,sep = "\t",stringsAsFactors = F)

导入数据的时候需要注意一个地方:从cell ranger得到的矩阵,每一列的列名会在CB后面加上"-1"这个字符串,在R里面导入数据时,会自动转化为".1",在做匹配的时候需要注意一下。我已经提前转换为"_1"

> summary(as.numeric(Myeloid["CD14",]))
Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.000   0.000   0.689   1.080   2.111   4.500
> summary(as.numeric(Myeloid["PTPRC",]))
Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
0.000   1.200   1.681   1.607   2.124   3.520

考虑到下载的表达矩阵,表达值都不是整数,且大于0,推测该矩阵已经经过了标准化,因此下面的流程会跳过这一步

0. Seurat流程

我们直接把注释结果赋值到mye.seu@meta.data矩阵中,后面省去聚类这一步

mye.seu=CreateSeuratObject(Myeloid)
mye.seu@meta.data$CB=rownames(mye.seu@meta.data) 
mye.seu@meta.data=merge(mye.seu@meta.data,Myeloid_anno,by="CB")
rownames(mye.seu@meta.data)=mye.seu@meta.data$CB

#替代LogNormalize这一步
mye.seu[["RNA"]]@data=mye.seu[["RNA"]]@counts
mye.seu <- FindVariableFeatures(mye.seu, selection.method = "vst", nfeatures = 2000)
mye.seu <- ScaleData(mye.seu, features = rownames(mye.seu))

mye.seu <- RunPCA(mye.seu, npcs = 50, verbose = FALSE)
mye.seu=mye.seu %>% RunHarmony("sample", plot_convergence = TRUE)
mye.seu <- RunUMAP(mye.seu, reduction = "harmony", dims = 1:20)
mye.seu <- RunTSNE(mye.seu, reduction = "harmony", dims = 1:20)
#少了聚类

DimPlot(mye.seu, reduction = "tsne", group.by = "celltype", pt.size=1)+theme(
  axis.line = element_blank(),
  axis.ticks = element_blank(),axis.text = element_blank()
)
ggsave("tsne1.pdf",device = "pdf",width = 17,height = 14,units = "cm")

基本符合原图,三个亚群分得开,三个亚群分不开。


接下来,我用4种方式展示marker基因,这些基因可以在文献的补充材料里面找到。

1. tsne展示marker基因

FeaturePlot(mye.seu,features = "CCR7",reduction = "tsne",pt.size = 1)+
  scale_x_continuous("")+scale_y_continuous("")+
  theme_bw()+ #改变ggplot2的主题
  theme( #进一步修改主题
    panel.grid.major = element_blank(),panel.grid.minor = element_blank(), #去掉背景线
    axis.ticks = element_blank(),axis.text = element_blank(), #去掉坐标轴刻度和数字
    legend.position = "none", #去掉图例
    plot.title = element_text(hjust = 0.5,size=14) #改变标题位置和字体大小
  )
ggsave("CCR7.pdf",device = "pdf",width = 10,height = 10.5,units = "cm")  

另一种方法就是把tsne的坐标和基因的表达值提取出来,用ggplot2画,其实不是很必要,因为FeaturePlot也是基于ggplot2的,我还是演示一下

mat1=as.data.frame(mye.seu[["RNA"]]@data["CCR7",])
colnames(mat1)="exp"
mat2=Embeddings(mye.seu,"tsne")
mat3=merge(mat2,mat1,by="row.names")

#数据格式如下:
> head(mat3)
Row.names     tSNE_1     tSNE_2   exp
1 N01_AAACGGGCATTTCAGG_1   5.098727  32.748145 0.000
2 N01_AAAGATGCAATGTAAG_1 -24.394040  26.176422 0.000
3 N01_AACTCAGGTAATAGCA_1  11.856730   8.086553 0.000
4 N01_AACTCAGGTCTTCGTC_1  10.421878  12.660407 0.000
5 N01_AACTTTCAGGCCATAG_1  33.555756 -10.437406 1.606
6 N01_AAGACCTTCGAATGGG_1 -23.976967  11.897753 0.738

mat3%>%ggplot(aes(tSNE_1,tSNE_2))+geom_point(aes(color=exp))+
  scale_color_gradient(low = "grey",high = "purple")+theme_bw()
ggsave("CCR7.2.pdf",device = "pdf",width = 13.5,height = 12,units = "cm")

用ggplot2的好处就是图形修改很方便,毕竟ggplot2大家都很熟悉

2. 热图展示marker基因

画图前,需要给每个细胞一个身份,因为我们跳过了聚类这一步,此处需要手动赋值

Idents(mye.seu)="celltype"

library(xlsx)
markerdf1=read.xlsx("ref_marker.xlsx",sheetIndex = 1)
markerdf1$gene=as.character(markerdf1$gene)
# 这个表格整理自原文的附表,选了53个基因

#数据格式
# > head(markerdf1)
# gene   celltype
# 1    S100B DC2(CD1C+)
# 2 HLA-DQB2 DC2(CD1C+)
# 3   FCER1A DC2(CD1C+)
# 4     CD1A DC2(CD1C+)
# 5     PKIB DC2(CD1C+)
# 6    NDRG2 DC2(CD1C+)

DoHeatmap(mye.seu,features = markerdf1$gene,label = F,slot = "scale.data")
ggsave("heatmap.pdf",device = "pdf",width = 23,height = 16,units = "cm")

label = F不在热图的上方标注细胞类型,
slot = "scale.data"使用scale之后的矩阵画图,默认就是这个

接下来用pheatmap画,在布局上可以自由发挥

library(pheatmap)
colanno=mye.seu@meta.data[,c("CB","celltype")]
colanno=colanno%>%arrange(celltype)
rownames(colanno)=colanno$CB
colanno$CB=NULL
colanno$celltype=factor(colanno$celltype,levels = unique(colanno$celltype))

先对细胞进行排序,按照celltype的顺序,然后对基因排序

rowanno=markerdf1
rowanno=rowanno%>%arrange(celltype)

提取scale矩阵的行列时,按照上面的顺序

mat4=mye.seu[["RNA"]]@scale.data[rowanno$gene,rownames(colanno)]
mat4[mat4>=2.5]=2.5
mat4[mat4 < (-1.5)]= -1.5 #小于负数时,加括号!

下面就是绘图代码了,我加了分界线,使其看上去更有区分度

pheatmap(mat4,cluster_rows = F,cluster_cols = F,
         show_colnames = F,
         annotation_col = colanno,
         gaps_row=as.numeric(cumsum(table(rowanno$celltype))[-6]),
         gaps_col=as.numeric(cumsum(table(colanno$celltype))[-6]),
         filename="heatmap.2.pdf",width=11,height = 7
         )

先写到这儿吧(原本以为能写完的),剩下的气泡图、堆叠小提琴图改天再补上。

因水平有限,有错误的地方,欢迎批评指正!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容