知识|本福特定律

先问大家一个问题:

我们每天会遇见很多数据,这些数据的打头数字是1到9的任一个。请问:每个数字打头的概率是多少?

如果你的回答是1/9,那么恭喜你,你是正常人,点开这篇文章是你正确的选择!

1935年的某一天,物理学家富兰克.本福特(Frank.Benford)在图书馆查阅资料,他在翻阅对数表时,发现对数表的头几页要比后面的页脏一些。

话说聪明的脑袋是一样的,愚笨的脑袋各式各样。牛顿的脑袋被苹果砸中,于是发现了万有引力。本福特也是如此,他拍了一下脑袋,发现了“本福特定律”。

对数表的前几页比后面的脏,这说明有更多的人查阅头几页,这说明以1、2、3开头的数据比7、8、9开头的数据多。

本福特搜集了人口、地理、经济等许多统计数据进一步分析,发现自然数据源,只要样本足够多,数据中以1为打头的数字出现的频率并不是1/9,而是30.1%。以2开头的数字出现的频率是17.6%。往后出现频率依次减少,以9为首的数字出现的频率最低,只有4.6%。

数字 出现频率
1 0.301
2 0.176
3 0.125
4 0.097
5 0.079
6 0.067
7 0.058
8 0.051
9 0.046
合计 1.000

本福特定律的应用条件是:

1.数据不能是规律排序的。
2.数据不能经过人为修饰。

会计师怎样利用本福特定律呢?

我们知道会计数据是以货币计量的信息,这些从小到大自然累加的数据必然是符合“本福特定律”的。我们通过分析一家公司的财务数据,对照上面的表格,基本可以判断这些财务数据是否经过“人为修饰”。

2001年12月,全球500强中排名第七的安然公司在股价持续下跌的情况下向法庭申请破产,并向美国证监会承认会计造假。

安然事件引起公众对会计数据造假的关注,直接导致了2002年8月《萨班斯法案》的诞生。

事后,有好事者发现安然公司公布的财务数据不符合“本福特定律”,这证明安然公司的高层确实改动过财务数据。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容

  • 本福特定律(本福德法则,Frank Benford),又称第一数字定律,是指在实际生活中得出的一组数据中,以1为首...
    Albert_Sun阅读 1,442评论 0 1
  • 解释 数字的变化快慢往往基于自身的大小。同样的位数,比如5位,10000到20000 和 80000到90000 ...
    VanCare阅读 1,452评论 0 0
  • 感谢清崎老师与编辑的合力出版,这本书的确对我们的认知会产生很大的改变。 【本书作者】罗伯特·T·清崎 莎伦·...
    文羽墨阅读 5,884评论 0 25
  • 一春一生根 一夏一风吟 一秋一黄昏 一冬一凌晨 一动一诚恳 一静一温存 一眼一单纯 一言一颗心 一起一浮生 一落一...
    宋予屿阅读 279评论 3 4
  • 我觉得世界上最美好的,莫过于彼此之间互有好感,却还没有正式成为各自男女朋友的那段时光。 ——题记 那天我走在马路上...
    会长大人白無石阅读 431评论 1 3