学习笔记DL006:特征分解,奇异值分解

特征分解。

整数分解质因素。

特征分解(eigendecomposition),使用最广,矩阵分解一组特征向量、特征值。方阵𝑨的特征向量(eigenvector),与𝑨相乘相当对该向量缩放非零向量𝑣,𝑨𝑣=λ𝑣。标量λ为特征向量对应特征值(eigenvalue)。左特征向量(left eigenvector) 𝑣ᵀ𝑨=λ𝑣ᵀ,右特征向量(right eigenvector)。𝑣是𝑨的特征向量,任何缩放向量𝑠𝑣(𝑠∈ℝ,𝑠≠0)也是𝑨的特征向量。𝑠𝑣和𝑣有相同特征值。只考虑单位特征向量。

矩阵𝑨有𝑛个线性无关特征向量{𝑣⁽¹⁾,…,𝑣⁽ⁿ⁾},对应特征值{λ₁,…,λn}。特征向量连接成一个矩阵,每一列是一个特征向量,V=[𝑣⁽¹⁾,…,𝑣⁽ⁿ⁾]。特征值连接成一个向量𝝺=[λ₁,…,λn]ᵀ。𝑨的特征分解(eigendecomposition),记𝑨=Vdiag(𝝺)V⁻¹。

构建具有特定特征值和特征向量矩阵,在目标方向上延伸空间。矩阵分解(decompose)成物征值和特征向量,分析矩阵特定性质。

每个实对称矩阵都可以分解成实特征向量和实特征值,𝑨=Q𝚲Qᵀ。Q是𝑨的特征向量组成正交矩阵,𝚲是对角矩阵。特征值𝚲i,i对应特征向量是矩阵Q的第i列,记Q:,i。Q是正交矩阵,𝑨看作沿方向𝑣⁽i⁾延展λi倍空间。两多或多个特征向量拥有相同特征值,特征向量产生生成子空间,任意一组正交赂量都是该特征值对应特征向量。可等价地从特征向量构成Q替代。按降序排列𝚲元素。特征分解唯一当且仅当所有特征值唯一。矩阵是奇异的当且仅当含有零特征值。实对称矩阵分解可用于优化二次方程f(x)=xᵀ𝑨x,限制||x||₂=1。x等于𝑨某个特征向量,𝑓返回对应特征值。限制条件下,函数𝑓最大值是最大特征值,最小值是最小特征值。

所有特征值是正数的矩阵为正定(positive definite)。所有特征值是非负数矩阵为半正定(positive semidefinite)。所有特征值是负数矩阵为负定(negative definite)。所有特征值是非正数矩阵为半负定(negative semidefinite)。半正定矩阵,保证∀x,xᵀ𝑨x>=0。正定矩阵保证xᵀ𝑨x=0 => x=0。

矩阵𝑨有两个标准正交特征向量,对应特征值λ₁的𝑣⁽¹⁾对应特征值为λ₂的𝑣⁽²⁾。所有单位向量u∈ℝ²集合,构成一个单位圆。所有𝑨u点集合。𝑨拉伸单位圆方式,将𝑣⁽i⁾方向空间拉伸λi倍。

奇异值分解(singular value decomposition,SVD)。

矩阵分解为奇异向量(singular vector)、奇异值(singular value)。奇异值分散应用更广泛。每个实数矩阵都有一个奇异值分解。非方阵矩阵没有特征分解。奇异值分解,矩阵𝑨分解成三个矩阵乘积。𝑨=𝑈𝐷𝑉ᵀ。𝑨是mn矩阵,𝑈是mm矩阵,𝐷是mn矩阵,𝑉是nn矩阵。矩阵经定义后有特殊结构。矩阵𝑈和𝑉正交矩阵。𝐷对角矩阵,不一定是方阵。

对角矩阵D对角线上元素为矩阵𝑨的奇异值(singular value)。矩阵𝑈的列向量为左奇异向量(left singular vector),矩阵𝑉的列向量为右奇异向量(right singular vector)。

可以用与𝑨相关特征分解解释𝑨的奇异值分解。𝑨的左奇异向量(left singular vector)是𝑨𝑨ᵀ的特征向量。𝑨的右奇异向量(right singular vector)是𝑨ᵀ𝑨的特征向量。𝑨的非零奇异值是𝑨ᵀ𝑨特征值的平方根,也是𝑨𝑨ᵀ特征值的平方根。

SVD最有用性质,拓展矩阵求逆到非方矩阵。

参考资料:

《深度学习》

欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi

我有一个微信群,欢迎一起学深度学习。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容