使用CoreML图片识别

CoreML 是 Apple 今年 WWDC 新推出面向开发者的机器学习框架。

图1

Apple 对于 Core ML 的介绍:

CoreML 让你将很多机器学习模型集成到你的app中。除了支持层数超过30层的深度学习之外,还支持决策树的融合,SVM(支持向量机),线性模型。由于其底层建立在Metal 和Accelerate等技术上,所以可以最大限度的发挥 CPU 和 GPU 的优势。你可以在移动设备上运行机器学习模型,数据可以不离开设备直接被分析。

Core ML 让所有的机器学习计算都在iOS设备本地进行,这一点依旧体现出苹果对用户隐私很看重.用苹果的一张图来看看 CoreML 的底层框架

图2.png
  • vision:高性能的图像分析和图像识别。这部分应用于人脸追踪,人脸识别,文本识别,区域识别,二维码识别,物体追踪,图像识别等。

  • Nattural Language processing:自然语言处理。用于语言识别,分词,词性还原,词性判定等。

  • GamePlayKit:游戏制作,构建游戏。用于常见的游戏行为如随机数生成、人工智能、寻路、和代理行为。

Core ML 的底层是 Accelerate and BNNS 和 Metal Performance Shaders,框架集成了神经网络,并且内核优化了图形计算和大规模计算,让App充分使用GPU组件。

接下来我们来体验一下 CoreML,Apple 提供了一些常见的开源模型供大家使用,而且这些模型已经使用了 Core ML 模型格式。您可以自行下载这些模型,然后就可以开始在应用中使用它们了。你也可以使用其他第三方机器学习工具来创建和训练模型,将你自己创建的模型使用Core ML Tools 转换成 Core ML 就可以了。

这里下载 Apple 提供的 ResNet50 Model,将下载好的 Model 加入到项目工程中,点击可以看到

图3.png

从上图可以看到 CoreML Model 分成三部分,第一部分算是基本的描述,第二部分 ModelClass 是对应 Model 生成的 Source 点击 Resnet50 末尾的小箭头进入Resnet50.h 文件 可以看到对应 Model的类和方法如图:

图4.png

一共生成了三个类分别是Resnet50,Resnet50Input,Resnet50Output

Resnet50Input:用于你需要识别的参数,对应图3 第三部分的inputs

Resnet50Output: 用于输出鉴定结果,对应图3 第三部分的参数outputs

Resnet50Input需要传入的参数是CVPixelBufferRef,这里直接使用Vision将图片转换成可支持的数据类型。

具体核心识别代码:

Resnet50 *resnetModel = [[Resnet50 alloc] init];

UIImage *image = self.selectedImageView.image;

VNCoreMLModel *vnCoreModel = [VNCoreMLModel modelForMLModel:resnetModel.model error:nil];

VNCoreMLRequest *vnCoreMlRequest = [[VNCoreMLRequest alloc] initWithModel:vnCoreModel completionHandler:^(VNRequest * _Nonnull request, NSError * _Nullable error) {

    CGFloat confidence = 0.0f;

    VNClassificationObservation *tempClassification = nil;

    for (VNClassificationObservation *classification in request.results) {
        if (classification.confidence > confidence) {
            confidence = classification.confidence;
            tempClassification = classification;
        }
    }

    self.recognitionResultLabel.text = [NSString stringWithFormat:@"识别结果:%@",tempClassification.identifier];
    self.confidenceResult.text = [NSString stringWithFormat:@"匹配率:%@",@(tempClassification.confidence)];
}];

VNImageRequestHandler *vnImageRequestHandler = [[VNImageRequestHandler alloc] initWithCGImage:image.CGImage options:nil];

NSError *error = nil;
[vnImageRequestHandler performRequests:@[vnCoreMlRequest] error:&error];

if (error) {
    NSLog(@"%@",error.localizedDescription);
}

这里使用Vision库中VNCoreMLModel , VNCoreMLRequest , VNImageRequestHandler
关键开始识别方法
[vnImageRequestHandler performRequests:@[vnCoreMlRequest] error:&error];
识别完成会回调vnCoreMlRequestcompletionHandler,其返回的结果是一个VNClassificationObservation数组,每一个VNClassificationObservation都是一个识别的结果,我们要从里面选出匹配率最高的一个结果出来。具体的Vision库使用可以看看官方文档https://developer.apple.com/documentation/vision

VNClassificationObservation对象有两个参数
1.confidence 识别率,值越高应该是越接近的
2.identifier 识别结果

扩展
Core ML (二)手把手教你生成 Core ML 模型

Core ML (三) Core ML 实战

demo 下载

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容