Spark之 SparkSql、DataFrame、DataSet介绍

SparkSql

SparkSql是专门为spark设计的一个大数据仓库工具,就好比hive是专门为hadoop设计的一个大数据仓库工具一样。

特性:

1、易整合
    可以将sql查询与spark应用程序进行无缝混合使用,同时可以使用java、scala、python、R语言开发代码
2、统一的数据源访问
    sparksql可以使用一种相同的方式来对接外部的数据源
    val dataframe=SparkSession.read.格式("该格式文件的路径")
3、兼容hive
    可以通过sparksql来操作hivesql
4、支持标准的数据库连接
    可以通过使用jdbc和odbc来连接上数据库

DataFrame

DataFrame前身叫SchemaRDD,在spark1.3.0之后把schemaRDD改名为DataFrame,DataFrame不在继承RDD,而之前的SchemaRDD它是直接继承自RDD,它是自己实现了RDD的一些方法。

DataFrame是spark中基于RDD的分布式数据集,类似于传统数据库中的二维表格,表中有对应的字段名称和类型。在DataFrame这些信息就是它schema元信息。

DataFrame和RDD的区别

DataFrame比RDD多了对数据结构的描述信息,也就是DataFrame中的schema,schema里面有哪些列和列的类型是什么。

DataFrame和RDD的优缺点

 RDD
 优点
    1、编译时类型安全
        也就是说后期开发代码的时候会进行类型的检查
    2、具有面向对象编程的风格
        可以通过对象调用方法
 缺点
    1、数据序列化和反序列化性能开销很大。
        数据在进行网络传输的时候,先要进行序列化,后续又需要进行反序列化这些操作都是在内存中进行
    2、频繁的对象的创建会带来GC(jvm内存回收机制:垃圾回收),GC处理的时候,其他进程都会暂停。
DataFrame
 优点
    DataFrame引入了schema和off-heap
    1、schema就是对于DataFrame数据的结构信息进行描述
        在进行数据序列化的时候,就不需要针对于数据的结构进行序列化了,直接把数据本身进行序列化就可以了,减少数据的网络传输。
            解决了RDD在数据进行序列化和反序列化性能开销很大这个缺点。
    2、off-heap不在使用jvm堆中的内存来构建大量的对象,而是直接使用操作系统层面上的内存
        解决了RDD在堆中频繁创建大量的对象造成GC这个缺点。
 缺点
    DataFrame引入了schema和off-heap解决了RDD的缺点,同时也丢失了RDD的优点
    1、编译时不在是类型安全
    2、也不具备面向对象编程这种风格

创建DataFrame的几种方式

读取文本文件

val df=spark.read.text("/person.txt")
df.printSchema
df.show

读取json文件

val df=spark.read.json("/people.json")
df.printSchema
df.show

读取parquet文件

val df=spark.read.parquet("/users.parquet")
df.printSchema
df.show

DataSet

DataSet是分布式的数据集合,Dataset提供了强类型支持,也是在RDD的每行数据加了类型约束。DataSet是在Spark1.6中添加的新的接口。它集中了RDD的优点(强类型和可以用强大lambda函数)以及使用了Spark SQL优化的执行引擎。

DataSet和DataFrame的转换

1、DataFrame转换成DataSet

   val ds=df.as[强类型] 

2、DataSet转换成DataFrame

   val df=ds.toDF

创建DataSet的几种方式

通过一个已经存在的scala集合去构建

val ds=spark.createDataset(List(1,2,3,4))
val ds=List(1,2,3,4).toDS

通过一个已经存在的RDD去构建

val ds=spark.createDataset(sc.textFile("/person.txt"))</pre>

DataFrame转换成DataSet

val ds=df.as[强类型]

通过一个已经存在DataSet调用对应的方法去生成一个新的DataSet

val ds1=ds.map(x =>"itcast:"+x)

http://spark.apache.org/docs/2.1.3/api/scala/index.html#org.apache.spark.sql.Dataset

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容