数据产品经理

今天在拉勾上投简历的时候看到数据产品经理的职位,不太明白数据产品经理需要哪些技能,所以去知乎上搜了看看,谢谢大牛们的解答,我在这里总结一下,捋一捋思路。

1.释义:产品(数据产品)经理

2.什么是数据产品?

以数据为主要自动化产出的产品形态。

这里强调自动化产出概念,是为了区分像 Gartner 之类的数据研究咨询公司,显然,他们的报告也可以理解为以数据为主要产出的产品,但并不具备自动化产出的特性。

2.数据产品的分类?

按用户群体来区分,可以分为三类:

1.自建BI和推荐系统(企业内部使用的数据产品)

2.Google Analytics 和GrowingIO(针对所有企业推出的商业型数据产品)

3. Google Trends 和淘宝指数、百度指数(任何用户均可使用的)

注:推荐系统、用户画像、搜索排序类似的算法,它们本质上是根据用户数据和相应的数据模型,建立的一套评分标签体制。因此,在很多企业的划分里,这也是属于数据产品的范畴。个人经验所限,本文暂不涉及此类产品。

3.为什么需要数据产品?

GrowingIO 创始人张溪梦先生说过一句话:一件事情只有被量化,才可能被优化。这与当先流行的 Growth Hack 核心理念(1.growth hacker 描绘成程序猿和 marketing 的混血儿,利用各种技术上的最佳实践来驱动用户的增长。2.从产品层面开始考虑用户增长。)不谋而合。增长是所有企业经营者的念念不忘,而那一声回响,就潜藏在数据产品中。

举个栗子,在Facebook中,直接汇报给 Mark Zuckerberg 的 Growth Team 就专门下辖了 Data & Analysis 和 Infrastructure 两个数据团队做数据的采集计算和展示。他们会对 Facebook 所有的数据进行监控,以及根据效果持续优化。他们对 Data Driven 重视到了什么程度?一个VP带领的30人团队做了一年的主页改版,在三个月内灰度上线过程中因数据表现不佳,直接回滚。对比之下,国内的人人网照抄那一次改版后,沿袭至今。可以这么说,Facebook 高速稳定的增长背后,数据产品功不可没。

4.如何设计数据产品?


大到系统级的产品规划,小到功能级的产品设计,概念上都会清晰很多,我们将它抽象成了五个步骤:

1.弄清楚需求(用户?场景?)

2.解决什么问题?带来什么价值?

3.问题的分析思路是什么?

4.需要用到什么样的指标?

5.这些指标该怎么组合展现?


1. 弄清楚需求和解决的问题

用户需求=用户(特征、经验、人物角色)+场景(移动化、自动化。。。)+行为+体验目标

业务需求=业务目的(why?需要解决什么问题)+业务目标(做了之后,期望达到什么目的)

用户体验路径=搞清楚用户在使用前、使用中、使用后不同阶段不同渠道的各个接触点,确保需求形成闭环

Demand/Want/Need分析方法。

用户来找你要可乐 (Demand),如果你没有可乐就无法满足用户。但其实他只是要解渴 (Want),需要的只是一杯喝的东西就够了 (Need)。

以一个利用GrowingIO的新功能做出来的漏斗图为例。客户最开始说的是我们要个漏斗分析 (Demand) 的功能,但核心需求 (Want) 是改善用户使用产品过程中的流失问题。那么不同来源不同层次的用户,在不同的使用时间,在不同的环节都需要进行监控和优化,最终设计出来的就是这个可以根据不同纬度不同环节进行对比分析的GrowingIO漏斗 (Need) 。

任何产品设计均需要明确面向的用户和场景,因为不同用户在不同场景下打开你产品的姿势也大不相同。

不同用户有不同的价值。这个方法主要面向第一类即企业内部产品。这里并不主张职位歧视,只是从数据能产生的价值来看,高层的一个正确的决断可以节省下面无数的成本。

不同层级用户关心的粒度不一样,永远要提供下一个颗粒度的分析以及可细化到最细粒度的入口。数据分析本质上就是不断细分和追查变化。

不同类型的用户使用数据的场景不一样,要围绕这些场景做设计。如 Sales 类型的客户,他们更多的场景是在见客户的路上快速看一眼数据,那么移动化和自动化就很关键。在设计的时候,原则就是通过手机界面展现关键指标,不涉及详细分析功能。而且在某些指标异动时能及时通过手机通知。而办公室的数据分析师,则必须提供PC界面更多细化分析对比的功能。

如何了解自己的用户?

方法:必须和他们保持长期有效的沟通。

如 GrowingIO 的PM,每周都会有和销售和客户沟通的习惯

而且每位PM入职后,必须兼职一段时间的客服。

只有这样,PM才能更好的了解用户以及他们的使用场景,设计出更好用的产品。

2. 需求的价值和优先级

但凡需求,均有价值和优先级。

PST方法:

P:x轴,用户的痛苦有多大;(深度)

Y轴,有多少用户有这种痛苦;(规模)

z轴:用户愿意为这付出多少多少成本。

相乘得出的结果才是这个需求的价值。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容