tf02

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (15,10)

n_observations = 100
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
# plt.scatter(xs, ys)
# plt.show()
X = tf.placeholder(tf.float32, name='X')
Y = tf.placeholder(tf.float32, name='Y')

W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.multiply(X, W), b)

W_2 = tf.Variable(tf.random_normal([1]), name='weight_2')
Y_pred = tf.add(tf.multiply(tf.pow(X, 2), W_2), Y_pred)

W_3 = tf.Variable(tf.random_normal([1]), name='weight_3')
Y_pred = tf.add(tf.multiply(tf.pow(X, 3), W_3), Y_pred)


sample_num = xs.shape[0]
loss = tf.reduce_mean(tf.square(Y_pred - Y))
train_step = tf.train.AdamOptimizer().minimize(loss)
n_samples = xs.shape[0]

with tf.Session() as sess:
    # 记得初始化所有变量s
    sess.run(tf.global_variables_initializer())
    # writer = tf.summary.FileWriter('./graphs/polynomial_reg', sess.graph)
    # 训练模型
    for i in range(1000):
        total_loss = 0
        for x, y in zip(xs, ys):
            # 通过feed_dic把数据灌进去
            _, l = sess.run([train_step, loss], feed_dict={X: x, Y: y})
            total_loss += l
        if i % 20 == 0:
            print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
    # 关闭writer
    #writer.close()
    # 取出w和b的值
    W, W_2, W_3, b = sess.run([W, W_2, W_3, b])

plt.plot(xs, ys, 'bo', label='Real data')
plt.plot(xs, xs * W + np.power(xs, 2) * W_2 + np.power(xs, 3) * W_3 + b, 'r', label='Predicted data')
plt.legend()
plt.show()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容

  • 永川没有太阳。 偶尔的两次晴天,也给人不真实的虚幻感觉。 她太安静了,最闹热的地方也只是稀零的两个人散漫的游走。 ...
    挖坑必填假英雄阅读 106评论 0 0
  • 阿里旅行是我最近用的比较多的一个应用,因为有信用住,所以我还推荐给了我的好多同学和朋友,阿里旅行的口号是“世界触手...
    Fred_young阅读 4,245评论 2 9