曲线运动的加速度 by田湖雁

第三讲:自然坐标系下曲线运动的加速度

—— 以圆周运动为例


数学符号

\vec{e}_n, \vec{e}_{t}, \frac{x}{y}, \sqrt{x}

对应的代码为
$\vec{e}_n$, $\vec{e}_{t}$, $\frac{x}{y}$, $\sqrt{x}$


知识点

  • 曲线运动的加速度\vec{a}​

    • 自然坐标系, \vec{e}_n\vec{e}_{t}

    • 匀速圆周运动的加速度,向心加速度 a_n=\frac{v^2}{R}

      • 写成矢量式 \vec{a}_n=\frac{\vec{v^2}}{R}
    • 直线运动的加速度,切向加速度 a_t=\frac{dv}{dt}​

      • 写成矢量式 \vec{a}_t=\frac{d \vec{v}}{dt}​​
    • 变速圆周运动的加速度

      • \vec{a}=​\vec{a}_n+\vec{a}_t
    • 一般曲线运动的加速度

      • 曲率半径的直观感受
      • 计算曲率半径

例题


  • 例1.

    曲线运动中,加速度经常按切向\vec{e}_{t}和法向\vec{e}_{n}进行分解:

    \vec{a}=\vec{a}_{t}+\vec{a}_{n}​$$=\frac{dv}{dt}\vec{e}_{t}+\frac{v^{2}}{R}\vec{e}_{n}​

    借助熟悉的例子来构建其直观物理图像,有助于理解并记忆这些复杂的公式。

    • 在弯曲的轨道上匀速率行驶的火车,
      (1) \vec{a}_{t}\neq0
      (2) \vec{a}_{t}=0

    • 在直线上加速跑向食堂的小伙伴,
      (3) \vec{a}_{t}\neq0
      (4) \vec{a}_{t}=0

    • 变速圆周运动的质点,
      (5) \vec{a}_{t}\neq0\vec{a}_{n}=0
      (6) \vec{a}_{t}\neq0a_{n}=\frac{v^{2}}{R} (不就是高中学过的向心加速度嘛)

      上述判断正确的为

解答:(2)(3)(6)


  • 例2.

    一个质点在做圆周运动时,则

    • 切向加速度一定改变, 法向加速度也改变
    • 切向加速度可能不变, 法向加速度一定改变
    • 切向加速度可能不变, 法向加速度不变
    • 切向加速度一定改变, 法向加速度不变

解答: - 切向加速度可能不变, 法向加速度一定改变


  • 例3.

    物体作斜抛运动,初速度大小为v_{0},且速度方向与水平前方夹角为\theta,则物体轨道最高点处的曲率半径为( )。

解答:物体的运动轨迹为一抛物线
水平方向上x=v_0cos\theta t
竖直方向y=v_0sin\theta t -1/2gt^2
最高点的曲率k=g/(v_0^2cos\theta^2)
最高点的曲率半径ρ=v_0^2cos\theta^2/g.


  • 例4.

    质点在Oxy 平面内运动,其运动方程为\vec{r}=t\ \vec{i}+\frac{1}{2}t^{2}\ \vec{j}.则在t=1 时切向和法向加速度分别为( )

解答:\vec{v}=\frac{d \vec{r}}{dt}​​=\vec{i}++\frac{1}{2}t\vec{j}
v=\sqrt{1+t^2}
a=1
a_t=\frac{dv}{dt}=\frac{\sqrt{2}}{2}
a_n=\frac{\sqrt{2}}{2}


作业




  • 质点在Oxy 平面内运动,其运动方程为\vec{r}=3t\ \vec{i}+(1-t^{2})\ \vec{j}.则在t_{1}=1t_{2}=5 时间内的平均速度为

解答:\vec v_平=Δr/Δt=(r_2-r_1)/(t_2-t_1)=(12\ \vec{i}-24 \vec{j})(5-1)
v_平=2\sqrt{12^2+(-24^2)}=24\sqrt{5}

  • 设质点的运动学方程为 \vec{r}=R\cos\omega t\ \vec{i}+R\sin\omega t\ \vec{j} (式中R\omega皆为常量) 则质点的速度和速率分别为

解答:\vec v=\frac{d\vec r}{dt}=Rw\cos\omega t\ \vec{i}+Rw\sin\omega t\ \vec{j}
v=Rw

  • 运动学的一个核心问题是已知运动方程,求速度和加速度。质点的运动方程为
    \begin{cases} x=-10t+30t^{2} & ,\\ y=15t-20t^{2} & , \end{cases}
    t时刻的速度与速率

解答:\vec v_x=-10+60t
\vec v_y=15-40t
\vec v=(-10+60t)\vec i+(15-40t)\vec j
v=\sqrt{(-10+60t)^2+(15-40t)^2}

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容