1 简介
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。
缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略 FIFO(First In,First Out)、最少使用策略 LFU(Least Frequently Used)、最近最少使用策略 LRU(Least Recently Used)。
打个比方你很容易就明白了。假如说,你买了很多本技术书,但有一天你发现,这些书太多了,太占书房空间了,你要做个大扫除,扔掉一些书籍。那这个时候,你会选择扔掉哪些书呢?对应一下,你的选择标准是不是和上面的三种策略神似呢?
2 如何实现"LRU"
“链表(Linked list)”这个数据结构。一个经典的链表应用场景,那就是 LRU 缓存淘汰算法。
基于链表实现 LRU 缓存淘汰算法
我们维护一个有序单链表,越靠近链表头部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表尾开始顺序遍历链表。
- 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的尾部。
- 如果此数据没有在缓存链表中,又可以分为两种情况:
如果此时缓存未满,则将此结点直接插入到链表的尾部;
如果此时缓存已满,则链表头结点删除,将新的数据结点插入链表的尾部。
现在我们来看以链表为缓存访问的时间复杂度是多少。因为不管缓存有没有满,我们都需要遍历一遍链表,所以这种基于链表的实现思路,缓存访问的时间复杂度为 O(n)。
实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。
基于链表+哈希表 实现 LRU 缓存淘汰算法
一个缓存(cache)系统主要包含下面这几个操作
- 往缓存中添加一个数据;
- 从缓存中删除一个数据;
- 在缓存中查找一个数据。
这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是 O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)。具体的结构就是下面这个样子:
我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。
了解了这个散列表和双向链表的组合存储结构之后,我们再来看,前面讲到的缓存的三个操作,是如何做到时间复杂度是 O(1) 的?
如何查找一个数据
散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。
如何删除一个数据
我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在 O(1) 时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。
如何添加一个数据
添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
这整个过程涉及的查找操作都可以通过散列表来完成。其他的操作,比如删除头结点、链表尾部插入数据等,都可以在 O(1) 的时间复杂度内完成。所以,这三个操作的时间复杂度都是 O(1)。至此,我们就通过散列表和双向链表的组合使用,实现了一个高效的、支持 LRU 缓存淘汰算法的缓存系统原型。