Tensorflow 解惑[二]:feed_dict不一定与placeholder捆绑

Tensorflow的设计理念称之为计算流图,在编写程序时,首先构筑整个系统的graph,代码并不会直接生效,这一点和python的其他数值计算库(如Numpy等)不同,graph为静态的,类似于docker中的镜像。然后,在实际的运行时,启动一个session,程序才会真正的运行。这样做的好处就是:避免反复地切换底层程序实际运行的上下文,tensorflow帮你优化整个系统的代码。我们知道,很多python程序的底层为C语言或者其他语言,执行一行脚本,就要切换一次,是有成本的,tensorflow通过计算流图的方式,帮你优化整个session需要执行的代码,还是很有优势的。
上面扯了许多很虚的东西,接下来引入本文的主角:feed_dict。刚学tensorflow的时候,以为feed_dict是和placeholder配对使用的。比如下面的代码,说明了feed_dict的基本用法:

import tensorflow as tf

a = tf.placeholder(dtype=tf.float32)
b = tf.placeholder(dtype=tf.float32)
c = tf.add(a, b)

with tf.Session() as sess:
    print sess.run(c, feed_dict = {a: 1.0, b: 2.0})

OK, 其实feed_dict可以喂东西给其他tensor,不止placeholder这一种。例如,下面的代码:

import tensorflow as tf

a = tf.placeholder(dtype=tf.float32)
b = tf.constant(2.0)
c = tf.add(a, b)

with tf.Session() as sess:
    print sess.run(c, feed_dict = {a: 1.0, b: 3.0})

运行的结果为4,这里利用feed_dict将3.0送给了tensor b。
总结一下,知道了这种原理,对于模型恢复的理解很有帮助。机器学习系统伴随着tensor的流动(tensorflow的寓意即为此,神经网络等等,其实就是tensor的线性变换和非线性激活),也许,我们只拿到了中间的tensor。举例而言,你在做图片分类的工作,训练过程中,graph的placeholder为任意size的像素矩阵,但当你恢复模型的时候,已经有预处理完的图片像素tensor,这时就可以直接将其导入对应的tensor中即可,前提是知道对应的tensor的name或者符号,此时或许需要用到tf.get_tensor_by_name这个函数。feed_dict的灵活运用,也能反映出对graph思想理解。

若有不对之处,请大神指教。转载请注明出处,谢谢。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容

  • 最是人间留不住,朱颜辞镜花辞树
    小昭呀阅读 253评论 0 0
  • 乡党第十(主要记录孔子言谈举止,衣食住行和生活习惯) 每日《论语》编辑:曹友宝 【原文】 10.21入太庙,每事问...
    曹友宝阅读 309评论 0 0
  • 谁都有哀伤痛苦和不满 尝试挑战不抱怨 对于听觉污染 抿嘴微笑相当于阻拦 谁都有缺憾 改变语言与观念 宽容可以挣得美...
    龙青阅读 417评论 0 1
  • 上周末去看了芳华,当片尾曲响起的时候,我还陷在那种悲伤的情绪里无法自拔。这不是一部普通的文艺片或爱情片,她讲述了一...
    仪琳阅读 432评论 0 1