单细胞笔记1-Seurat标准流程

加载数据集

pbmc.data <- Read10X(data.dir = "../data/pbmc3k/filtered_gene_bc_matrices/hg19/")            # 读取10X数据(一个包含三个文件的文件夹)

pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)            # 创建Seurat对象


质量控制

# 找出所有线粒体基因保存在pbmc对象中

pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")

# 可视化

VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")

FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")

# 过滤基因数数超过2500或少于200的细胞和线粒体计数> 5%的细胞

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)



pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)            # 规范化数据

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)            # 识别高度可变基因

LabelPoints(plot = VariableFeaturePlot(pbmc), points = head(VariableFeatures(pbmc), 10), repel = TRUE)

pbmc <- ScaleData(pbmc, features = rownames(pbmc))            # 缩放数据:使所有细胞的平均表达为0,方差为1,如果不加feature参数,默认只选择高度可变基因进行scale


降维

pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))            # 执行PCA

print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)            # 展示前5个对主成分影响最大的基因集

VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")        # 可视化

DimPlot(pbmc, reduction = "pca")

DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

# 确定主成分的个数

# 法一:重采样:随机置换数据的一部分(默认为1%),然后重新运行PCA,重复此过程。

pbmc <- JackStraw(pbmc, num.replicate = 100)

pbmc <- ScoreJackStraw(pbmc, dims = 1:20)

JackStrawPlot(pbmc, dims = 1:15)

# 法二:基于每个主成分所解释的方差百分比对主成分进行排序

ElbowPlot(pbmc)


细胞聚类

pbmc <- FindNeighbors(pbmc, dims = 1:10)            # 首先基于PCA空间中的欧式距离构造一个KNN图,然后基于其局部邻域中的共享重叠来细化任意两个细胞之间边缘的权重(Jaccard相似性)

pbmc <- FindClusters(pbmc, resolution = 0.5)            # 社区发现。resolution参数不同,发现的社区数量也不同

pbmc <- RunUMAP(pbmc, dims = 1:10)            # 运行非线性降维(UMAP / tSNE)

DimPlot(pbmc, reduction = "umap")                # UMAP可视化


寻找差异表达基因

cluster1.markers <- FindMarkers(pbmc, ident.1 = 1, min.pct = 0.25)        # 找出cluster 1 的所有marker基因

head(cluster1.markers, n = 5)

cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)            # 找出区分cluster5与社区cluster0和社区cluster3的所有marker

head(cluster5.markers, n = 5)

pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)            # 找出每一个簇的marker,并与所有剩余的细胞进行比较,只报告阳性的

pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)

cluster1.markers <- FindMarkers(pbmc, ident.1 = 0, logfc.threshold = 0.25, test.use = "roc", only.pos = TRUE)            # 使用test.use参数设置多个差异表达测试,例如,ROC测试返回任何单个标记的“分类能力”,范围从0(随机)到1(完美)


VlnPlot(pbmc, features = c("MS4A1", "CD79A"))            # 火山图可视化marker基因

FeaturePlot(pbmc, features = c("MS4A1", "CD79A"))            # Featureplot图可视化marker基因

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)

DoHeatmap(pbmc, features = top10$gene) + NoLegend()            # DoHeatmap生成给定单元和特征的表达式热图。在这种情况下,我们将为每个聚类绘制前10个标记

new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", "CD8 T", "FCGR3A+ Mono", "NK", "DC", "Platelet")            # 将细胞类型标识分给每个簇

names(new.cluster.ids) <- levels(pbmc)

pbmc <- RenameIdents(pbmc, new.cluster.ids)

DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()


参考

https://satijalab.org/seurat/v3.0/pbmc3k_tutorial.html

https://www.jianshu.com/p/03b94b2034d5?from=singlemessage&isappinstalled=0

https://wenku.baidu.com/view/c310a283152ded630b1c59eef8c75fbfc67d946e.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容