全球的互联网大公司是怎样做大数据?

大数据”炙手可热,很多企业都不会错失机会,谷歌已经从一个网页索引发展成为一个实时数据中心枢纽,可以估量任何可以测量的数据,将输入的查询与所有可用数据相匹配,确定用户查找的信息;对脸谱网来说大数据就是“人”,公司也利用这一点在十几年之内成为世界上最大的公司之一。

亚马逊通过分析用户习惯,将用户与其他可能符合用户需求的产品和建议相匹配;领英帮助求职者根据自己的技能和经验来匹配空缺职位,帮助招聘人员找到与特定资料相匹配的人才,这些都是大数据应用的典型例子,但也只是其中一部分,越来越多的数据易获得,复杂工具也会随之涌现,大数据的利用可以改变我们个人生活和商业活动。

当下,每个人都听说过人们如何利用大数据治愈癌症、终结恐怖主义和养活饥饿人口来改变世界。

当然,也很明显,有些人正利用它来赚大钱——据估计,到2030年,世界经济将增加15万亿美元。

很多人可能会想“那太好了,但实际上和我没什么关系。”只有拥有数百万美元资产的大型科技公司才会真正受益。那你需要大量的数据才能开始一项新的研究吗?

其实并不是这样的。事实上,利用近年在数据收集、分析上的巨大突破,很容易改善我们的个人和商业生活。很多人先前可能没有认识到这点。

以下是大数据作为日常生活工具和服务的一部分的一些细节。

谷歌——语义分析与用户画像

尽管谷歌并没有把自己标榜成数据公司,但实际上它的确是数据宝库和处理问题的工具。它已经从一个网页索引发展成为一个实时数据中心枢纽,几乎可以估量任何可以测量的数据(比如:天气信息、旅行延迟、股票和股份、购物……以及其他很多事情)。

大数据分析——也就是说,当我们进行搜索时大数据就会起作用,可以使用工具来对数据分类和理解。谷歌计算程序运行复杂的算法,旨在将输入的查询与所有可用数据相匹配。它将尝试确定你是否正在寻找新闻、事实、人物或统计信息,并从适当的数据库中提取数据。

对于更复杂的操作,例如翻译,谷歌会调用其他基于大数据的内置算法。谷歌的翻译服务研究了数以百万计的翻译文本或演讲稿,旨在为顾客提供最准确的解释。

在此我向大家推荐一个大数据技术交流圈: 658558542  突破技术瓶颈,提升思维能力  (☛点击即可加入群聊

经常利用大数据分析的对象从最大的企业到单人乐队,当他们通过谷歌的Adwords进行广告宣传时就是对大数据的利用。通过分析我们浏览的网页(很明显能看出我们喜欢什么网页),谷歌可以向我们展示我们可能感兴趣的产品和服务的广告。广告商使用Adwords和谷歌分析等其他服务,以吸引符合其客户资料的人员到其网站和商店时,广告商就利用了大数据分析。

脸谱网——图像识别与“人”的大数据

尽管脸谱网与谷歌在市场营销上差异巨大,但实际上它们的业务和数据模式非常相似。众所周知,两个公司都选择将自己的企业形象定位重点放在大数据方面。

对谷歌来说,大数据是在线信息、数据和事实。对脸谱网来说大数据就是“人”。脸谱网让我们与朋友和家人保持联系越来越方便,利用这个巨大的吸引力,该公司在十几年之内成为世界上最大的公司之一。这也意味着他们收集了大量的数据,同时我们也可以自己使用这些大数据。当我们搜索老朋友时,大数据就会发挥作用,将我们的搜索结果与我们最有可能联系的人进行匹配。

由脸谱网开创的先进技术包括图像识别——一种大数据技术,通过利用数百万种其他图像进行训练,能教会机器识别图片或视频中的主题或细节。在我们告诉它图片中的人是谁之前,机器可以通过标签来识别图片中的人。这也是为什么,当我们的朋友分享或给图片“点赞”时,如果它发现我们喜欢看例如婴儿或猫的图片,在我们的信息流中就会看到更多这种类型的图片。

对人们兴趣及其利益的详细了解也使脸谱网能够向任何企业出售极具针对性的广告。脸谱网可以帮助企业根据详细的人口统计数据和兴趣数据找到潜在客户,或者可以仅仅让他们通过查找与企业已有客户相似的其他客户来完成他们的大数据“魔术”。

在此我向大家推荐一个大数据开发交流圈: 658558542  突破技术瓶颈,提升思维能力  (☛点击即可加入群聊

亚马逊——基于大数据的推荐引擎

亚马逊作为世界上最大的在线商店,也是世界上最大的数据驱动型组织之一。亚马逊和本文提到的其他互联网巨头之间的差别很大程度上取决于市场营销。与谷歌和一样,亚马逊提供了广泛的在线服务,包括信息搜索、关注朋友和家人的账号以及广告,但其品牌建立在最初以购物闻名的服务上。

亚马逊将我们浏览和购买的产品与全球数百万其他客户进行比较。通过分析我们的习惯,可以将我们与其他可能符合我们需求的产品和建议相匹配。大数据技术在亚马逊的应用就是推荐引擎,而亚马逊是推荐引擎的鼻祖,其也是最复杂的。除了购物,亚马逊还让客户利用自己的平台赚钱。任何在自己的平台上建立交易的人都会受益于数据驱动的推荐,从理论上讲,这将吸引合适的客户来购买产品。

领英——被筛选过的精准大数据

如果你是一名雇主,或是正在找工作的人,领英会提供一些可以帮助你的大数据。

求职者可以根据自己的技能和经验来匹配空缺职位,甚至可以找到与公司其他员工以及其他可能竞争该职位的员工的数据。

对招聘人员来说,领英的大数据可以找到与特定资料相匹配的人才,例如现任员工或前雇员。

领英对其数据采取了“围墙的花园”方式(注:“围墙花园”是相对于“完全开放”的互联网,把用户限制在一个特定的范围内,允许用户访问指定的内容),当你选择在何处寻找和使用大数据时,这个不同之处值得考虑。领英的招聘人员和申请人的服务都是由公司内部和由服务本身控制的数据进行的,而谷歌是(在美国也提供招聘信息)从大量外部资源中获取收数据。领英的方法提供了潜在的更高质量的信息,而另一方面,它可能不全面。谷歌的方法提供了更大容量的数据,但这些数据可能是你想要的,也可能不是。

这些只是应用大数据的几种方式——远非资源丰富的公司和技术精英的工具,而是我们大部分人在日常生活中已经从中受益的东西。随着越来越多的数据变得容易获取,越来越复杂的工具涌现出来,从中获得价值,肯定会有更多的数据产生。

结语

感谢您的观看,如有不足之处,欢迎批评指正。

在此我向大家推荐一个大数据开发交流圈:

658558542    (☛点击即可加入群聊

里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,大数据离线处理、数据实时处理、Hadoop 、Spark、Flink、推荐系统算法以及源码解析等,送给每一位大数据小伙伴,让自学更轻松。这里不止是小白聚集地,还有大牛在线解答!欢迎初学和进阶中的小伙伴一起进群学习交流,共同进步!

最后祝福所有遇到瓶颈的大数据程序员们突破自己,祝福大家在往后的工作与面试中一切顺利。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容