n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例:
输入: 4
输出: [
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解释: 4 皇后问题存在两个不同的解法。
代码
class Solution {
public:
vector<vector<string> > solveNQueens(int n) {
vector<vector<string> > res;
vector<int> pos(n, -1);
solveNQueensDFS(pos, 0, res);
return res;
}
void solveNQueensDFS(vector<int> &pos, int row, vector<vector<string> > &res) {
int n = pos.size();
if (row == n) {
vector<string> out(n, string(n, '.'));
for (int i = 0; i < n; ++i) {
out[i][pos[i]] = 'Q';
}
res.push_back(out);
} else {
for (int col = 0; col < n; ++col) {
if (isValid(pos, row ,col)) {
pos[row] = col;
solveNQueensDFS(pos, row + 1, res);
pos[row] = -1;
}
}
}
}
bool isValid(vector<int> &pos, int row, int col) {
for (int i = 0; i < row; ++i) {
if (col == pos[i] || abs(row - i) == abs(col - pos[i])) {
return false;
}
}
return true;
}
};