Z学长论fast-rcnn对L1,L2的损失的选择~~

1.一个样本反向传播的过程:

首先,一个样本通过网络得到一个损失

它在网络的传播过程中会记录下他经过每一层之后的计算结果

当然,损失值也是这些结果之一

接下来就开始反向传播了

记住一个规则,每一层的梯度更新值和两个因素有关(梯度就是偏导数)

第一,网络前向传播过程中在这一层计算后得到的值   第二:这一层的下一层的梯度值

第一融合第二得到本层的梯度值

最后得到一个梯度值,然后干啥?

得到梯度值就可以更新参数了啊

参数 = 参数 - 学习率*梯度值

2.那么如果一个batch有200张图片,应该怎么反传呢?请开始你的演讲

一个图片网络梯度更新一次,那么200张图片作为一个batch呢?

也是更新一次!

为什么是一次,他在每一层都会有200个计算副本,都会有200个梯度,他会把他们加起来取平均

用平均值去更新梯度~更新网络

3.那么为什么要避免极端值

第一个原因:

在一个batch中,我们希望每个样本都起到作用,L2使用的二次函数的增长很可怕,如果有几个极端值,那么batch中其他的样本就起不到作用了

为什么起不到作用?很简单,取平均啊~~取平均啊~~~

第二个原因~

你知道学习率大了网络会发散,对吗?为什么会发叁?

因为梯度更新的幅度太大了

我们再看这个式子:参数 = 参数 - 学习率*梯度值

大声告诉我,梯度更新幅度除了与学习率有关还和什么有关!

是下一层梯度值和本层前向传播的结果值啊

【本层前向传播咋可能有损失值!!!难道你中间层还有lable??? 没有lable哪里来的损失】

那么如果l2损失遇到极端值,最后一层的损失会很大。然而它参与梯度计算

同样会导致发散~

4.那为啥还要有L2损失,既然他这么不好

一个原因!

平滑~容易求导~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容