MapReduce工作流程最详细解释

Mapreduce简介

Hadoop MapReduce 源于Google发表的 MapReduce论文。Hadoop MapReduce 其实就是Google MapReduce的一个克隆版本。Hadoop 2.0即第二代Hadoop系统,其框架最核心的设计是HDFS、MapReduce和YARN。其中,HDFS为海量数据提供存储,MapReduce用于分布式计算,YARN用于进行资源管理。

MapReduce的工作流程图

图片

其实,一次mapreduce过程就包括上图的6个步骤,input、splitting、mapping、shuffling、redecing、final redult。

  • Input

文件要存储在HDFS中,每个文件被切分成多个一定大小的块也就是Block,(Hadoop1.0默认为64M,Hadoop2.0默认为128M),并且默认3个备份存储在多个的节点中。

MR通过Inputformat将数据文件从HDFS中读入取,读取完后会对数据进行split切片,切片的数量根据Block的大小所决定,然后每一个split的个数又决定map的个数,即一个split会分配一个maptask并行实例处理。


如何确定切分的文件大小?

默认split的大小与block的大小相同,为128MB。
split大小由minSize、maxSize、blockSize决定
protected long computeSplitSize(long blockSize, long minSize, long maxSize) {
    return Math.max(minSize, Math.min(maxSize, blockSize));
}

  • Mapper

数据进入到map函数中,然后开始按照一定的规则切分。其实这就是我们自定义的计算逻辑,我们编写mr程序的map函数的逻辑一般就在这个阶段执行。企业应用为了追求开发效率,一般都使用hive sql代替繁琐的mr程序了,这里附上一个经典的wordcount的map函数重温一下吧。


// Mapper四个参数:第一个Object表示输入key的类型;第二个Text表示输入value的类型;第三个Text表示表示输出键的类型;第四个IntWritable表示输出值的类型。map这里的输出是指输出到reduce 
public static class doMapper extends Mapper<Object, Text, Text, IntWritable> {
public static final IntWritable one = new IntWritable(1);//这里的IntWritable相当于Int类型
public static Text word = new Text();//Text相当于String类型

// map参数<keyIn key,valueIn value,Context context>,将处理后的数据写入context并传给reduce
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {

//StringTokenizer是Java工具包中的一个类,用于将字符串进行拆分  
            StringTokenizer tokenizer = new StringTokenizer(value.toString(), "   ");

//返回当前位置到下一个分隔符之间的字符串  
            word.set(tokenizer.nextToken());

//将word存到容器中,记一个数
            context.write(word, one);
        }
    }
  • shuffle

Shuffle是我们不需要编写的模块,但却是十分关键的模块。

图片

在map中,每个 map 函数会输出一组 key/value对, Shuffle 阶段需要从所有 map主机上把相同的 key 的 key value对组合在一起,(也就是这里省去的Combiner阶段)组合后传给 reduce主机, 作为输入进入 reduce函数里。

Partitioner组件 负责计算哪些 key 应当被放到同一个 reduce 里

HashPartitioner类,它会把 key 放进一个 hash函数里,然后得到结果。如果两个 key 的哈希值 一样,他们的 key/value对 就被放到同一个 reduce 函数里。我们也把分配到同一个 reduce函数里的 key /value对 叫做一个reduce partition.

我们看到 hash 函数最终产生多少不同的结果, 这个 Hadoop job 就会有多少个 reduce partition/reduce 函数,这些 reduce函数最终被JobTracker 分配到负责 reduce 的主机上,进行处理。

Map方法之后,数据首先进入到分区方法,把数据标记好分区,然后把数据发送到环形缓冲区;环形缓冲区默认大小100m,环形缓冲区达到80%时,进行溢写;溢写前对数据进行排序,排序按照对key的索引进行字典顺序排序,排序的手段快排;溢写产生大量溢写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。每个Reduce拉取Map端对应分区的数据。拉取数据后先存储到内存中,内存不够了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作。值得注意的是,整个shuffle操作是有3次排序的。

同时reduce任务并不是在map任务完全结束后才开始的,Map 任务有可能在不同时间结束,所以 reduce 任务没必要等所有 map任务 都结束才开始。事实上,每个 reduce任务有一些 threads 专门负责从 map主机复制 map 输出(默认是5个)。
  • Reduce

图片

reduce() 函数以 key 及对应的 value 列表作为输入,按照用户自己的程序逻辑,经合并 key 相同的 value 值后,产 生另外一系列 key/value 对作为最终输出写入 HDFS。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容