空间热阻表面热阻及系统黑度的推导

标签(空格分隔): 传热学


要点:注意J,q是未知数互相耦合,换热量\Phi需要消去未知数

1.有效辐射的定义

J=\frac{E}{\alpha}-\frac{1-\alpha}{\alpha}=E_b-(\frac{1-\varepsilon}{\varepsilon})q\tag{9-12}

在(9-12)中,J和q都是未知数,只有黑体辐射Eb是已知

2.辐射换热量为面积乘以有效辐射乘以角系数之差

\Phi_{1,2}=A_1J_1X_{1,2}-A_2J_2X_{2,1}\tag{d}

把(9-12)两边乘以面积与各自的角系数A_iX_{i,j},用于核算换热,往(d)式靠:

并注意热流量q乘以面积A等于换热量\Phi

J_1A_1X_{1,2}=A_1X_{1,2}E_{b1}-\Phi_{1,2}(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}\tag{1}

同理

J_2A_2X_{2,1}=A_2X_{2,1}E_{b2}-\Phi_{2,1}(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1}\tag{2}

(1)-(2)式,左边等于\Phi_{1,2},消去了

由于能量守恒\Phi_{1,2}=-\Phi_{2,1}

(2)式将换热量变形为关于\Phi_{1,2}的方程

J_2A_2X_{2,1}=A_2X_{2,1}E_{b2}+\Phi_{1,2}(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1}\tag{3}

3.联立(1)-(3)左边等于(d)式左边求解\Phi_{1,2}

J_1A_1X_{1,2}=A_1X_{1,2}E_{b1}-\Phi_{1,2}(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}\\ J_2A_2X_{2,1}=A_2X_{2,1}E_{b2}+\Phi_{1,2}(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1}
\Phi_{1,2}=A_1X_{1,2}E_{b1}-A_2X_{2,1}E_{b2}-\Phi_{1,2}((\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}+(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1})\tag{4}

对式(4)合并同类项,将换热量求解出来

[1+(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}+(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1})]\Phi_{1,2}=A_1X_{1,2}E_{b1}-A_2X_{2,1}E_{b2}
\Phi_{1,2}=\frac{A_1X_{1,2}E_{b1}-A_2X_{2,1}E_{b2}}{[1+(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}+(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1})]}\tag{5}

5.(5)式中换热量全表示为已知数了,利用角系数的相对性A_1X_{1,2}=A_2X_{2,1}

\Phi_{1,2}=\frac{A_1X_{1,2}(E_{b1}-E_{b2})}{[1+(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}+(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1})]}\tag{6}

6.(6)式变形,分子分母同时除以A_1X_{1,2}

\Phi_{1,2}=\frac{E_{b1}-E_{b2}}{[\frac{1}{A_1X_{1,2}}+(\frac{1-\varepsilon_1}{\varepsilon_1})\frac{X_{1,2}}{A_1X_{1,2}}+(\frac{1-\varepsilon_2}{\varepsilon_2})\frac{X_{2,1}}{A_1X_{1,2}})]}\tag{6}

7.还是相对性A_1X_{1,2}=A_2X_{2,1},因此\frac{X_{2,1}}{A_1X_{1,2}}=\frac{1}{A2}

(6)式变为空间热阻与表面热阻相关的形式

\Phi_{1,2}=\frac{E_{b1}-E_{b2}}{[\frac{1}{A_1X_{1,2}}+(\frac{1-\varepsilon_1}{\varepsilon_1})\frac{1}{A_1}+(\frac{1-\varepsilon_2}{\varepsilon_2})\frac{1}{A_2}]}\tag{7}

(7)式就是书上的(9-13a),前面提前介绍的空间热阻和表面热阻的推导实际上是根据上述推导流程导出,分子是驱动力,分母是三个热阻串联

8.系统黑度推导就是在(6)式对比黑度的定义式匹配\Phi_{1,2}=\varepsilon_sA_1X_{1,2}(E_{b1}-E_{b2})

\varepsilon_s=\frac{1}{[1+(\frac{1-\varepsilon_1}{\varepsilon_1})X_{1,2}+(\frac{1-\varepsilon_2}{\varepsilon_2})X_{2,1})]}\tag{9-14}

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容