[转]boost random library的使用

boost random library的使用

生成满足一定分布的随机数,是统计模拟、系统仿真等应用中最基本的要求。matlab中提供了函数可以生成各种常见分布的随机数,c++使用boost random库也可以很容易实现。
一、例子

boost random库的文档提供了一个例子,模拟掷色子。投掷一个均匀的色子,六个面每个面出现的概率应该是相等的,也就是说,投掷出的点数应该是服从{ 1 2 3 4 5 6 } 上的均匀分布的。

include <boost/random.hpp>

include <boost/random.hpp>

include <iostream>

int main()

{

boost::mt19937gen;
boost::uniform_int<>dist(1,6);
boost::variate_generator<boost::mt19937&,boost::uniform_int<>>die(gen,dist);

for( int i=0; i<10; ++i) {
   std::cout<<die() <<std::endl;

}
}

上面的例子虽然简单,但也可以看出要生成满足一定分布的伪随机数的一般步骤:

首先,我们需要一个伪随机数发生器(generator)。语句

boost::mt19937 gen;

声明了一个mt19937类型的伪随机数发生器gen。boost一共提供了17种类型伪随机发生器供使用者选择,它们是:

minstd_rand, rand48, lrand48, ecuyer1988, kreutzer1986, hellekalek1995, mt11213b, mt19937, lagged_fibonacci 607, lagged_fibonacci1279, lagged_fibonacci2281, lagged_fibonacci3217, lagged_fibonacci4423, lagged_fibonacci9689, lagged_fibonacci19937, lagged_fibonacci23209, lagged_fibonacci44497。

总之,名字是一个比一个丑啊。到底选用何种发生器,需要使用者在性能、质量和内存之间进行权衡,一般的应用的话,boost文档推荐使用mt19937就够了。也可以选择多种发生器,使结果相互印证,从而更可信。

其次,需要一个分布函数。由伪随机数发生器生成的伪随机数一般是一个很大区间上的均匀分布(如[1,2^99999999])。而要产生我们想要的分布的随机数(本例中,我们想要的分布为 {1 2 3 4 5 6 }上的均匀分布),还要对它们做某些变换。

boost::uniform_int<> dist(1, 6);

就是干这个事的。

boost random提供了如下的分布函数:

uniform_smallint ------ 一个整数集上的离散均匀分布

uniform_int ------ 一个整数集上的离散均匀分布

uniform_01 ------ [0, 1)上的连续均匀分布

uniform_real ------ [ min, max)上的连续均匀分布

bernoulli_distribution ------ 伯努利分布

geometric_distribution ------ 几何分布

triangle_distribution ------ 三角分布

exponential_distribution ------ 指数分布

normal_distribution ------ 正态分布

lognormal_distribution ------ 对数正态分布

uniform_on_sphere ------ 球面上的均匀分布

最后,把以上两个结合生成我们想要的随机数发生器:

boost::variate_generator<boost::mt19937&, boost::uniform_int<> > die(gen, dist);

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容