opencv学习之边缘检测

边缘检测图像处理 过程中经常会涉及到的一个环节。而在计算机视觉机器学习领域,边缘检测 用于 特征提取特征检测 效果也是特别明显。而 openCV 中进行边缘检测的 算法 真是五花八门,下面我就选几个最常用算法的函数api进行介绍。

本文涉及到的效果请看:边缘检测

内容大纲

  1. 转换灰度图

  2. 自适应阈值处理

  3. Sobel算子

  4. Scharr算子

  5. Laplacian算子

  6. Canny边缘检测

  7. Sobel算子 结合 Laplacian算子

转换灰度图

openCV 中有个色彩类型转换函数,其中转换为灰度图( cv.COLOR_RGB2GRAY)出现频率非常高,是其他操作的基础,色彩类型转换函数:

cv.cvtColor (src, dst, code, dstCn = 0)

  • src: 原始图像
  • dst: 输出图像
  • code: 色彩空间转换码,灰度图为cv.COLOR_RGB2GRAY,其他类型可查api文档
  • dstcn: 图像通道数
const src = cv.imread(img);//读取图像数据
const dst = new cv.Mat();//输出的图像
cv.cvtColor(src, dst, cv.COLOR_RGB2GRAY, 0);//转换为灰度图
cv.imshow(canvas, dst);
src.delete();
dst.delete();

自适应阈值处理

自适应阈值处理的方式通过计算每个像素点周围邻近区域的加权平均值获得阈值,并使用该阈值对当前像素点进行处理。自适应阈值处理函数:

cv.adaptiveThreshold(src, dst, maxValue, adaptiveMethod, thresholdType)

  • maxValue:需要处理的最大值
  • adaptiveMethod:自适应阈值算法,可选 cv.ADAPTIVE_THRESH_GAUSSIAN_C (高斯方程) 或 cv.ADAPTIVE_THRESH_MEAN_C(加权平均)
  • thresholdType: 阈值处理方法,可选 cv.THRESH_BINARY(二值化) 或 cv.THRESH_BINARY_INV(二值化取反)
const src = cv.imread(img);
const dst = new cv.Mat();
cv.cvtColor(src, src, cv.COLOR_RGBA2GRAY, 0);//转换为灰度图
cv.adaptiveThreshold(src, dst, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 5, 7);//自适应阈值处理
cv.imshow(canvas, dst);//显示输出图像

效果如下:
1.png

Sobel算子

Sobel算子结合了高斯平滑 和微分求导运算,利用局部差分寻找边缘,计算所得到的是一个梯度近似值。Sobel算子比较特殊的地方是要分别横向计算和纵向计算,然后再把两者结合,这就需要用到 cv.addWeighted 这个函数按比例显示输出图像xy方向的占比。Sobel算子函数:

cv.Sobel (src, dst, ddepth, dx, dy, ksize = 3, scale = 1, delta = 0, borderType = cv.BORDER_DEFAULT)

  • ddepth:输出图像的深度,可选 cv.CV_8U,cv.CV_16U,cv.CV_32F,cv.CV_64F
  • dx:x方向求导
  • dy:y方向求导
  • ksize:核大小,可选1,3,5,7
  • scale:缩放因子,默认1
  • delta:图像dst的值,默认0
  • borderType:边界样式,具体可查看api文档
const src = cv.imread(img);
const dstx = new cv.Mat();
const dsty = new cv.Mat();
const dst = new cv.Mat();
cv.cvtColor(src, src, cv.COLOR_RGB2GRAY, 0);
cv.Sobel(src, dstx, cv.CV_8U, 1, 0, 1, 3, 0, cv.BORDER_DEFAULT); //Sobel算子 x方向
cv.Sobel(src, dsty, cv.CV_8U, 0, 1, 1, 3, 0, cv.BORDER_DEFAULT); //Sobel算子 y方向
cv.addWeighted(dstx, 0.5, dsty, 0.5, 0, dst); //分别给xy方向分配权重比例
cv.imshow(canvas, dst);

效果如下:
2.png

Scharr算子

Scharr算子可以看做是对Sobel算子的改进,它的精度更高,调用方式和Sobel算子基本一致,只是少了ksize 这个参数,下面直接看调用代码不同的部分:

cv.Scharr(src, dstx, cv.CV_8U, 1, 0, 1, 0, cv.BORDER_DEFAULT); //Scharr算子 x方向
cv.Scharr(src, dsty, cv.CV_8U, 0, 1, 1, 0, cv.BORDER_DEFAULT); //Scharr算子 y方向
cv.addWeighted(dstx, 0.5, dsty, 0.5, 0, dst); //分别给xy方向分配权重比例

效果如下:
3.png

Laplacian算子

Laplacian(拉普拉斯)算子是一种二阶导数算子,可以满足不同方向的图像边缘锐化,Laplacian(拉普拉斯)算子分别进行了两次横向和纵向的计算。因此就不用跟 Sobel算子 和 Scharr算子 一样要分别单独计算xy了。Laplacian算子函数:

cv.Laplacian (src, dst, ddepth, ksize = 1, scale = 1, delta = 0, borderType = cv.BORDER_DEFAULT)

  • ddepth:输出图像的深度,可选 cv.CV_8U,cv.CV_16U,cv.CV_32F,cv.CV_64F
  • ksize:核大小,可选1,3,5,7
  • scale:缩放因子,默认1
  • delta:图像dst的值,默认0
  • borderType:边界样式,具体可查看api文档
const src = cv.imread(img);
const dst = new cv.Mat();
cv.cvtColor(src, src, cv.COLOR_RGB2GRAY, 0);
cv.Laplacian(src, dst, cv.CV_8U, 1, 1, 0, cv.BORDER_DEFAULT); //拉普拉斯算子
cv.imshow(canvas, dst);

效果如下:
4.png

Canny边缘检测

Canny边缘检测是一种使用多级边缘检测算法的方法。它会经过去噪,计算梯度,非极大值抑制,确定边缘这几个步骤,好像很强大的感觉。Canny函数:

cv.Canny(src, dot, threshold1, threshold2, apertureSize = 3, L2gradient = false)

  • threshold1: 第一个阈值,值较小时能获取更多边缘信息
  • threshold2: 第二个阈值,值较小时能获取更多边缘信息
  • apertureSize: 孔径大小
  • L2gradient: 图像梯度幅度,默认False
const src = cv.imread(img);
const dst = new cv.Mat();
cv.cvtColor(src, src, cv.COLOR_RGB2GRAY, 0);
cv.Canny(src, dst, 50, 100, 3, false);
cv.imshow(canvas, dst);

效果如下:
5.png

Sobel算子 结合 Laplacian算子

openCV 还可以将不同算法结合起来,达到更好的效果,我们就以 Sobel算子 结合 Laplacian算子 为例

const src = cv.imread(img);
const dstx = new cv.Mat();
const dsty = new cv.Mat();
const dst = new cv.Mat();
const dst2 = new cv.Mat();
cv.Sobel(src, dstx, cv.CV_8U, 1, 0, 1, 3, 0, cv.BORDER_DEFAULT); //sobel算子 x方向
cv.Sobel(src, dsty, cv.CV_8U, 0, 1, 1, 3, 0, cv.BORDER_DEFAULT); //sobel算子 y方向
cv.addWeighted(dstx, 0.5, dsty, 0.5, 0, dst); //分别给xy方向分配权重比例
cv.Laplacian(src, dst2, cv.CV_8U, 1, 1, 0, cv.BORDER_DEFAULT); //拉普拉斯算子
const mask = new cv.Mat();
cv.add(dst, dst2, dst2, mask, -1); //图像相加
cv.imshow(canvas, dst2);

效果如下:
6.png

总结

openCV中实现边缘检测远不止上面介绍的几种,还有一种更强大的方式实现边缘检测,那就是傅立叶变换,它完全可以实现上面说的算法,但是比较复杂而已。我们需要做的就是了解清楚每种算法 效果有什么差异,以及最适合使用的场景。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容