动态规划应用场景
求一个问题的最优解(通常是求最大值或者最小值),而且该问题能够分解成若干个子问题,并且子问题之间还有重叠的更小的子问题,就可以考虑用动态规划来解决。
相对递归的优势
相同的问题使用动态规划,可避免子问题重复计算,极大减小空间复杂度。
动态规划解题思路
- 确定状态
• 研究最优策略的最后一步
• 优化为子问题 - 转移方程
• 根据子问题定义直接得到 - 初始条件和边界情况
• 仔细,考虑周全 - 计算顺序
• 利用之前的计算结果
硬币问题
递归
static int coinChangeRecall(int amount, int[] coins) {
if (amount == 0) return 0;
int res = 14;
for (int coin : coins) {
if (amount >= coin) {
res = Integer.min(res, coinChangeRecall(amount - coin, coins) + 1);
}
}
return res;
}
动态规划
static int coinChange(int[] coins, int amount) {
int[] init = new int[amount + 1];
init[0] = 0;
for (int i = 1; i <= amount; i++) {
init[i] = Integer.MAX_VALUE;
for (int coin : coins) {
if (i >= coin && init[i - coin] != Integer.MAX_VALUE) {
init[i] = Math.min(init[i - coin] + 1, init[i]);
}
}
}
if (init[amount] == Integer.MAX_VALUE) {
init[amount] = -1;
}
return init[amount];
}
背包问题
递归
static int maxPackageValueRecall(int packageSpace, int[][] goods) {
if (packageSpace == 0) return 0;
int res = 0;
for (int[] good : goods) {
if (packageSpace > good[0]) {
res = Integer.max(res, maxPackageValueRecall(packageSpace - good[0], goods) + good[1]);
}
}
return res;
}
动态规划
static int maxPackageValue(int packageSpace, int[][] goods) {
int[] init = new int[packageSpace + 1];
init[0] = 0;
for (int s = 1; s <= packageSpace; s++) {
init[s] = 0;
for (int[] good : goods) {
if (good[0] < s) {
init[s] = Math.max(init[s - good[0]] + good[1], init[s]);
}
}
}
return init[packageSpace];
}
斐波那契数列
递归
static int fibRecall(int n) {
if (n == 1 || n == 2) return 1;
else {
return fibRecall(n - 1) + fibRecall(n - 2);
}
}
动态规划
static int fib(int n) {
int[] init = new int[n + 1];
init[1] = 1;
init[2] = 1;
for (int i = 3; i <= n; i++) {
init[i] = init[i - 1] + init[i - 2];
}
return init[n];
}
唯一路径 动态规划
static int GetUniqueRoadCount(int m, int n) {
int[][] init = new int[m][n];
int i, j;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (i == 0 || j == 0) {
init[i][j] = 1;
} else {
init[i][j] = init[i - 1][j] + init[i][j - 1];
}
}
}
return init[m - 1][n - 1];
}
最短步数 动态规划
static int minStep(int[] stepLengths, int sumLength) {
int[] init = new int[sumLength + 1];
init[0] = 0;
for (int i = 1; i <= sumLength; i++) {
init[i] = Integer.MAX_VALUE;
for (int j : stepLengths) {
if (i >= j && init[i - j] != Integer.MAX_VALUE) {
init[i] = Math.min(init[i], init[i - j] + 1);
}
}
}
if (init[sumLength] == Integer.MAX_VALUE) {
return -1;
}
return init[sumLength];
}