(SI 1)使用智能卡数据追踪工作和住房动态

https://www.pnas.org/content/suppl/2018/11/15/1815928115.DCSupplemental

Data

We collected one-week trip records from 2011 to 2017 in the Beijing subway system, excluding weekends and holidays (see Table S1). On average, each one-week dataset includes transit records of about 5 million passengers identified according to card ID numbers, and contains about 4 million trips per day. Each transit record includes the boarding time, alighting time, origin station, destination station, and card ID. 嫉妒的眼神 Meanwhile, we collected geographic attributes of metro stations and lines and their opening year. We obtain the average real estate resell price of housing around stations in May, 2018 (source: https://bj.lianjia.com/), as the largest share of Beijing’ real estate market is reselling. It is the data available currently.

Table S1

我也不明白为什么选用的是这段时间的数据

A map of Beijing subway system with spatial data can be seen in Figure S1, and an evolutionary(渐进的) map of lines and stations can be seen in Figure S2. In the buffer(缓冲区) analysis via ArcGIS, 2752 residential communities are within 1km catchment areas of stations, while 3979 are within 2km catchment areas. This number increases to 4290 when we look at the 3km catchment areas, accounting for about 95% of residential communities.This area aggregates about 90% of population in Beijing. This phenomenon motivates the analysis of job and housing dynamics with smartcard data.


Fig.S1

Fig.S2

Fig.S3

R1. Rules in identifying work station and home station

This paper employs the method by (1, 2) to identify workplaces and residences of regular commuters. In detail, the method finds the most preferred station near individual workplace or residence for each commuter, namely ‘work station’ and ‘home station’. We identify the work station for a commuter based on the following rules:

  1. Access an individual dataset when the commuter travels 4 or 5 days. One criterion(标准)is added here to focus on the study of regular commuters.
  2. Find out trips whose boarding time is 6 hours later than the alighting time of the previous trip. Namely, B_k − A_{k−1} ≤ 6 hours, where B_k denotes the boarding time of trip t_k and A_{k−1} denotes the alighting time of trip t_{k−1}.
    我觉得这个方法很好,因为通勤者的上班时间不同,如果只用高峰时期去划分的话,容易遗漏一些数据(比如教育机构的老师14-21点工作);不过如果研究的是rush hour的通勤特征,可能直接用高峰时间来划分通勤流会比较好。(我还没决定要用哪个)
  3. Exclude(排除) trips if they do not occur on the same day as the previous trip. Then all remaining trips are return commuting trips for this commuter.
    我的数据中也有这样的问题,但是我会考虑采用别的处理方式
  4. Among origin stations of commuting trips, the station where the commuter visited most frequently is regarded as the job station j .
    Similarly, the program identifies the commuter’s home location based on the following rules:
    (1) Access the individual dataset where the job station was identified above.
    (2) Among destination stations of commuting trips, the station where the commuter visited most frequently is regarded as the home station h.
    先确定工作地点,再在能确定工作地点的样本中进行居住地定位(学到了学到了)

R2. Rules in capturing moving behavior under network expansion

The Beijing subway network nearly doubled from 228 to 609 kilometers from 2011 to 2017. On average, about 20 new stations opened each year. This paper conducts a year-to-year analysis to capture the moving behavior under network expansion. We design rules to capture moving behavior as follow:

  1. If a workplace/ residence identified from a station already existing to a station newly opened that year, and the distance between two stations is within 3 km, to reduce false positives we regard the commuter as not switching workplace/ residence. Instead, this paper assumes that they have already worked/resided there and are reducing their commuting costs by choosing a new, now more optimal, station.
  2. If the distance is beyond 3 km, this paper assumes that the commuter relocates the residence/workplace.
  3. If commuters change their work station and/or home station between already existing stations, we assume that commuters change their workplace and/or residence.
  4. If home/ job stations identified in two years are adjacent, this paper regards this phenomenon as non-moving behavior to avoid false positives at the expense of more false negatives.

References

  1. Zhou J, Long Y (2014) Jobs-housing balance of bus commuters in beijing: exploration with large-scale synthesized smart card data. Transportation Research Record: Journal of the Transportation Research Board (2418):1–10.
  2. Zhou J, Murphy E, Long Y (2014) Commuting efficiency in the beijing metropolitan area: An exploration combining smartcard and travel survey data. Journal of Transport Geography 41:175–183.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容