DL00 Intro

DL Intro

熟悉sckit learn
import pandas as pd
from sklearn import linear_model
import matplotlib.pyplot as plt

#read data
dataframe = pd.read_fwf('brain_body.txt')
x_values = dataframe[['Brain']]
y_values = dataframe[['Body']]

#train model on data
body_reg = linear_model.LinearRegression()
body_reg.fit(x_values, y_values)

#visualize results
plt.scatter(x_values, y_values)
plt.plot(x_values, body_reg.predict(x_values))
plt.show()
gradient descent
  • 一种寻找 local minimum 的方法;
  • 对各维度求偏导数,顺着偏导数的方向(local minimum 方向)跑,跑的幅度(即learning rate);
  • 几个概念类比:
    • 偏导数的方向: 人脑学习技能时的学习“方向”;
    • learning rate: 人脑学习技能时候的细致程度;学得太细,完成学习的时间就长;学得太粗,可能最后没法子“收敛”(即完不成学习),把握好learning rate的度。。。
#The optimal values of m and b can be actually calculated with way less effort than doing a linear regression. 
#this is just to demonstrate gradient descent

from numpy import *

# y = mx + b
# m is slope, b is y-intercept
def compute_error_for_line_given_points(b, m, points):
    totalError = 0
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        totalError += (y - (m * x + b)) ** 2
    return totalError / float(len(points))

def step_gradient(b_current, m_current, points, learningRate):
    b_gradient = 0
    m_gradient = 0
    N = float(len(points))
    for i in range(0, len(points)):
        x = points[i, 0]
        y = points[i, 1]
        b_gradient += -(2/N) * (y - ((m_current * x) + b_current))
        m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
    new_b = b_current - (learningRate * b_gradient)
    new_m = m_current - (learningRate * m_gradient)
    return [new_b, new_m]

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
    b = starting_b
    m = starting_m
    for i in range(num_iterations):
        b, m = step_gradient(b, m, array(points), learning_rate)
    return [b, m]

def run():
    points = genfromtxt("data.csv", delimiter=",")
    learning_rate = 0.0001
    initial_b = 0 # initial y-intercept guess
    initial_m = 0 # initial slope guess
    num_iterations = 1000
    print "Starting gradient descent at b = {0}, m = {1}, error = {2}".format(initial_b, initial_m, compute_error_for_line_given_points(initial_b, initial_m, points))
    print "Running..."
    [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
    print "After {0} iterations b = {1}, m = {2}, error = {3}".format(num_iterations, b, m, compute_error_for_line_given_points(b, m, points))

if __name__ == '__main__':
    run()
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 《那一年的记忆》 那一年的记忆 溪水流过浅浅的河床 摇曳的小草 躲藏着几尾鱼儿 自由地摇摆 乳白的卵儿 幻化出一片...
    桓舟子阅读 1,430评论 0 2
  • 人有悲欢离合 月有阴晴圆缺,我们的情绪是否像天上的云彩飘忽不定?是什么决定着我们的情绪?我们的坏情绪一般以四种状态...
    做自己生命中的贵人阅读 3,339评论 0 1
  • 这世界给了我们太多戴面具的机会,白天一副面孔,夜晚换一副面孔,工作一副,在家还得套上一副,面对朋友一副,面对亲人又...
    七天大圣阅读 3,157评论 1 1