2018-05-05 时间空间序列

时间空间序列

Online spatio-temporal matching in stochastic and dynamic domains 1-s2.0-S0004370218302030-main

[1805.00734] Multiscale socio-ecological networks in the age of information

时间序列 时间空间
时间空间

《Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection》B Barz, E Rodner, Y G Garcia, J Denzler [Friedrich Schiller University] (2018) O网页链接 view:O网页链接 GitHub:O网页链接 ​​​​

《Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery》A Ziat, E Delasalles, L Denoyer, P Gallinari [Sorbonne Universits] (2018) O网页链接 view:O网页链接 ​​​​

今日焦点:部分观测环境下的空间记忆生成时序模型《Generative Temporal Models with Spatial Memory for Partially Observed Environments》

M Fraccaro, D J Rezende, Y Zwols, A Pritzel, S. M. A Eslami, F Viola [Technical University of Denmark & DeepMind] (2018) O网页链接 view:O网页链接 ​​​​
[1804.09401] Generative Temporal Models with Spatial Memory for Partially Observed Environments

Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

Amirhassan Fallah Dizche, Aranya Chakrabortty, Alexandra Duel-Hallen
Comments: Submitted to IEEE CDC 2018. 8 pages, 5 figures
Subjects: Systems and Control (cs.SY)
arXiv:1804.09827 [pdf, other]
In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We consider that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use online measurements of the generator states and control inputs to recursively learn a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. We highlight various implementation, convergence, and numerical benefits versus challenges associated with the proposed approach using the IEEE 39-bus power system model with 1149 unknown parameters.

《Graph-Based Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data》B Wang, X Luo, F Zhang, B Yuan, A L. Bertozzi, P. J Brantingham [UCLA] (2018) O网页链接 view:O网页链接 ​​​​

《Bag of Recurrence Patterns Representation for Time-Series Classification》N Hatami, Y Gavet, J Debayle [Ecole Nationale Superieure des Mines de Saint-Etienne] (2018) O网页链接 view:O网页链接 ​​​​

Online spatio-temporal matching in stochastic and dynamic domains 1-s2.0-S0004370218302030-main

[1805.00731] Exploring Emoji Usage and Prediction Through a Temporal Variation Lens

E:\搜狗高速下载2 2017.10-2018\1805.00731 Exploring Emoji Usage and Prediction Through a Temporal Variation Lens.pdf

[1805.00731] Exploring Emoji Usage and Prediction Through a Temporal Variation Lens

E:\搜狗高速下载2 2017.10-2018\1805.00731 Exploring Emoji Usage and Prediction Through a Temporal Variation Lens.pdf

[1804.08562] Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery

We introduce a dynamical spatio-temporal model formalized as a recurrent neural network for forecasting time series of spatial processes, i.e. series of observations sharing temporal and spatial dependencies. The model learns these dependencies through a structured latent dynamical component, while a decoder predicts the observations from the latent representations. We consider several variants of this model, corresponding to different prior hypothesis about the spatial relations between the series. The model is evaluated and compared to state-of-the-art baselines, on a variety of forecasting problems representative of different application areas: epidemiology, geo-spatial statistics and car-traffic prediction. Besides these evaluations, we also describe experiments showing the ability of this approach to extract relevant spatial relations.
Comments: accepted by: ICDM 2018 - IEEE International Conference on Data Mining series (ICDM)
Subjects: Learning (cs.LG); Machine Learning (stat.ML)
Journal reference: 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, 2017, pp. 705-714
DOI: 10.1109/ICDM.2017.80
Cite as: arXiv:1804.08562 [cs.LG]
(or arXiv:1804.08562v1 [cs.LG] for this version)

我们引入了一个动态的时空模型,形式化为一个递归神经网络,用于预测空间过程的时间序列,即共享时间和空间相关性的一系列观测值。 该模型通过结构化的潜在动态组件学习这些依赖关系,而解码器预测来自潜在表示的观察结果。 我们考虑这个模型的几个变体,对应于关于该系列之间的空间关系的不同的在先假设。 该模型经过评估并与最先进的基线进行比较,根据代表不同应用领域的各种预测问题:流行病学,地理空间统计和车流量预测。 除了这些评估之外,我们还描述了显示这种方法提取相关空间关系的能力的实验。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容