Trig functions
like sine
and cosine
have periodic graphs
which we called Sinusoidal Graph
, or Sine wave
.
Sinusoidal graphs
Math is fun: Graphs of Sine, Cosine and Tangent.
Symbolab example.
Graph of unit sine & cosine function
:
Midline, amplitude and period
They're three features of
sinusoidal graphs
.
-
Midline
: is the horizontal line that passes exactly in the middle between the graph's maximum and minimum points. -
Amplitude
: is the vertical distance between the midline and one of the extremum points. -
Period
: Also calledfrequency
, is the distance between two consecutive maximum points, or two consecutive minimum points (these distances must be equal).
Initial period and how to graph a sinusoidal function
To graph the whole function, you only need 1 period of the graph, and then just repeat that ever and ever.
And to avoid any confusion, we'd pick theinitial period
, which:
-
sin(x)
that interval is [0,2π], and looks like anS
. -
cos(x)
that interval is [0,2π], and looks like aBow
.
You really need to pay attention for the starting point
of the S
and the bow
, it's the great way to figure out the how much the graph shifted on x-axis.
The necessary information to draw the initial period
:
- Any two of the three position: Max, Min and Midline
- Period
- Phase shift from
initial point
With these information above, we could figure out all other informations about the period.
Initial period of sin(x)
Looks like a
flipped S
.
Starting point
of the flipped S
is its Midpoint
, at (0,0)
,
Full period
is 2π
, Midline
at y=0
, Range
is [1,-1]
.
Initial period of cos(x)
Looks like a
bow
.
Starting point
of the bow
is its Extreme point
, at (0,1)
,
Full period
is 2π
, Midline
at y=0
, Range
is [1,-1]
.
Phase shift of trig functions
Phase shift
means horizontal shift, or moves on x-axis. It's much harder to understand and calculate than the vertical shift.
Since trig functions(sine, cosine, tangent) are all periodic functions, so it's really CONFUSING with horizontal moving, because it's repeating, and you can't easily tell what happened with the graph.
Calculate algebraically how much is the Phase Shift
First need to figure out the starting point
of the initial period
, and to compare how much it moved from 0 on x-axis.
Youtube tutorial: How do you determine the phase shifts for sine and cosine graphs
Youtube tutorial : Sine Function Phase Shift
Since the initial period
of both sine and cosine functions starts from 0 on x-axis
,
with the formula of function y = A*sin(Bx+C)+D
,
we are to set the
(Bx+c) = 0
, and solve forx
,
the value of x
is the phase shift of the graph.
Why do we set (Bx+c) = 0
?
Because we could imagine the (Bx+c)
is a whole, and could be w
of the sin(w)
.
Since the initial period
of sin(w)
, always starts from 0
,
we could say the starting point of initial period
is 0
, so w=0
, then Bx+C=0
.
Informations of Sinusoidal functions
For the General sinusoidal function
:
f(x) = A・sin(Bx + C) + D
-
Amplitude
: |A| -
Period
: |2π / B| -
Vertical shift
: D -
Midline
: y=D -
Range
: [-A+D, A+D] -
Phase shift
: Set(Bx+C)=0
, and solve forx
. -
Sign of sine
: ~+
if there's a Max point after intersect y-axis,-
if Minimum point.~
Example:
f(x) = - 2sin(2x + 3) + 10
- Amplitude: |-2| = 2
- Period: |2π / 2| = π
- Vertical shift: +10
- Midline: y=10
- Range:
[2+10, -2+10]
= [12, 8] - Horizontal shift: set
2x+3=0
, getx=-3/2
, so it's shifting-3/2
from origin.
Example 2:
Solve:
- Midline:
y=2.5
- Amplitude:
|6-2.5|=3.5
- Period: Midpoint to Max is 1/4 period, so
1/4 * 2π/B = |-4π - (-5/2)π|
, solve for B gets1/3
. - Phase shift:
-4π
. Because themidpoint
on the left is thestarting point of initial period
At this moment, our formula is almost finished:
y = 3.5*sin(1/3 *x +C) +2.5
, so only the C
is not yet solved.
set 1/3 *x + C = 0
, since , since -4π
is the phase shift
, so we set x=-4π
, solve C gets 4π/3
.