Problem
Given a Binary Search Tree (BST) with the root node root
, return the minimum difference between the values of any two different nodes in the tree.
Example :
Input: root = [4,2,6,1,3,null,null]
Output: 1
Explanation:
Note that root is a TreeNode object, not an array.
The given tree [4,2,6,1,3,null,null] is represented by the following diagram:
4
/ \
2 6
/ \
1 3
while the minimum difference in this tree is 1, it occurs between node 1 and node 2, also between node 3 and node 2.
Note:
- The size of the BST will be between 2 and
100
. - The BST is always valid, each node's value is an integer, and each node's value is different.
- This question is the same as 530: https://leetcode.com/problems/minimum-absolute-difference-in-bst/
问题
给定一个二叉搜索树的根节点 root,返回树中任意两节点的差的最小值。
示例:
输入: root = [4,2,6,1,3,null,null]
输出: 1
解释:
注意,root是树节点对象(TreeNode object),而不是数组。
给定的树 [4,2,6,1,3,null,null] 可表示为下图:
4
/ \
2 6
/ \
1 3
最小的差值是 1, 它是节点1和节点2的差值, 也是节点3和节点2的差值。
注意:
- 二叉树的大小范围在 2 到 100。
- 二叉树总是有效的,每个节点的值都是整数,且不重复。
- 本题与 530:https://leetcode-cn.com/problems/minimum-absolute-difference-in-bst/ 相同
思路
DFS
法一:dfs遍历取节点值,再单独计算最小绝对差
法二:dfs遍历直接进行绝对值比较
Python3 代码
法一
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def minDiffInBST(self, root: TreeNode) -> int:
# solution one: dfs遍历取节点值,再单独计算最小绝对差
def dfs(root):
if not root:
return
# 中序遍历是递增的
if root.left:
dfs(root.left)
tmp_val.append(root.val)
if root.right:
dfs(root.right)
tmp_val = []
dfs(root)
res = float("inf")
for i in range(len(tmp_val) - 1):
res = min(res, abs(tmp_val[i] - tmp_val[i + 1]))
return res
法二
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def minDiffInBST(self, root: TreeNode) -> int:
# solution two: dfs遍历直接进行绝对值比较
pre = -1
res = float("inf")
def dfs(root):
nonlocal pre, res
if not root:
return
# 中序遍历是递增的
if root.left:
dfs(root.left)
if pre != -1:
res = min(res, abs(pre - root.val))
pre = root.val
if root.right:
dfs(root.right)
dfs(root)
return res