记CNN-权值共享

CNN中权值共享理解

转自:http://blog.csdn.net/lien0906/article/details/51249947

第一步,针对一个神经元,一幅640*360图像,一个神经元要对应640*360个像素点,即一个神经元对应全局图像,全连接的话一个神经元就有640*360个参数;

第二步,然而,图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些不同局部的神经元综合起来就可以得到全局信息。假如每个局部感受野10*10,每个局部感受野只需要和10*10的局部图像连接,这样一个神经元就只需要10*10个参数;

第三步,全局图像是640*360,但局部图像只有10*10大小,10*10个参数只针对局部图像,如果全局图像中各个局部图像之间权值共享的话,即10*10个参数在不同局部图像上参数应用相同的话,则在全局图像上通过全局共享则只需要10*10个参数;

第四步,10*10个参数只针对一个神经元,要是有100万个神经元,则需要100万*10*10个参数,神经元多后,参数还是太大,如果每个神经元的这10*10个参数相同呢,这样就还是只需要10*10参数,因而经过局部感受野到权值共享再到每个神经元的10*10个参数相同,不管图像多大,不管每层神经元个数多少,而两层间连接还是只需要求解10*10个参数;

第五步,由于只有一个滤波器,只提取了一种特征,特征也太少了。一种滤波器也就是一种卷积核就是提取图像一种特征,例如某个方向的边缘。那么我们需要提取不同特征怎么办,多加几个滤波器不就行了。假设我们加到100种滤波器,每种滤波器的参数不一样,表示提取输入图像不同特征,例如不同边缘。这样不同滤波器去卷积图像就得到不同特征的放映,我们称之为Feature Map,所以100中卷积核就有100个Feature Map,这100个Feature Map就组成了一层神经元。我们这一层有多少个参数到这时候就明了吧,100种卷积核 * 每种卷积核100个参数 = 100 * 100 = 10000个参数。

最后,刚才说每一个隐藏层的参数个数和隐藏层的神经元个数无关,只和滤波器大小和滤波器种类数有关,那么隐藏层的神经元个数怎么确定呢?它和原图像,也就是输入的大小(神经元个数)、滤波器的大小和滤波器在图像中的滑动步长都有关!假如我的图像是1000*1000像素的,而滤波器大小是10*10,假设步长为10,即滤波器没有重叠,这样隐藏层的神经元个数就是 1000 * 1000 / (10*10) = 100*100个神经元(如果步长为8,卷积核会重叠2个像素)。这只是一种滤波器,也就是一个Feature Map的神经元个数哦,如果100个Feature Map就是100倍了,

需要注意一点,上面的讨论都没有考虑每个神经元的偏置部分,所以权值个数需要加1,这也是同一种滤波器共享。如滤波器10*10,卷积核个数6,则参数个数为:

(10*10 +1) * 6 = 606.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容

  • 第一步,针对一个神经元,一幅640*360图像,一个神经元要对应640*360个像素点,即一个神经元对应全局图像,...
    Jeofu阅读 2,859评论 0 2
  • 五、Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,...
    dma_master阅读 1,642评论 1 2
  • CNN on TensorFlow 本文大部分内容均参考于: An Intuitive Explanation o...
    _Randolph_阅读 7,693评论 2 31
  • 有没有一种感觉,刚回家的时候。每天可以睡到自然醒,真的很舒服。可是,渐渐的不知道要做什么。玩手机,看电视。...
    未来11的你阅读 175评论 0 1
  • (一)字写人生 一张机。笔行墨舞意生姿。人生法度犹如是。高低展落,收提有尺,不亦悟觉兮?
    阳春一枝雪阅读 547评论 0 2