题目描述
Given a set of candidate numbers (candidates
) (without duplicates) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
The same repeated number may be chosen from candidates
unlimited number of times.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]
Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
题解
和2Sum、3Sum问题类似,但是问题更宽泛,并不要求元素的个数,只要数字组合之和等于target即可,而且数字可以被重复选取,比如例子1中,target为7,组合[2,2,3]中2被选择了两次。
言归正传,对于这个问题,首先想到的解法是dfs,深度优先遍历,或者说是递归方法。问题规模可以逐渐减小,target-> target-a -> target-a-b -> 0;当target为0,说明已经找到一个组合,然后向上“归”,不断选择数字。
为了减少重复次数,避免每次递归时都从下标0开始,我们先对数组进行排序,然后再进行递归,递归时为了保证数字能重复选择, 下次递归时起始坐标包含选择的当前数字。
具体代码:
class Solution {
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> result;
vector<int> temp;
sort(candidates.begin(),candidates.end());
backtrack(result, temp, candidates, target, 0);
return result;
}
private:
void backtrack(vector<vector<int>>& all, vector<int>& temp, vector<int>& nums, int remain, int start){
if(remain < 0) return;
else if(remain == 0) all.push_back(temp);
else{
for(int i=start; i<nums.size(); i++){
temp.push_back(nums[i]);
backtrack(all, temp, nums, remain-nums[i], i);
temp.pop_back();
}
}
}
};