tensorflow(3)——可视化

前言:主要介绍一下,TensorFlow变量作用域和可视化,变量作用域能更好底可视化展示数据流图

TensorFlow变量作用域

通过tf.Variable我们可以创建变量,但是当模型复杂的时候,需要构建大量的变量集,这样会导致我们对于变量管理的复杂性,而且没法共享变量(存在多个相 似的变量)。针对这个问题,可以通过TensorFlow提供的变量作用域机制来解决, 在构建一个图的时候,就可以非常容易的使用共享命名过的变量。
变量作用域机制在TensorFlow中主要通过两部分组成:
tf.get_variable:通过所给定的名字创建或者返回一个对应的变量
tf.variable_scope:为通过创建的变量或者操作Operation指定命名空间.
注意: tf.get_variable()和tf.Variable()不是一回事哦,用下面的方法可以区别:
1>>比如,tf.Variable()在定义的时候必须初始化,而tf.get_variable()定义的时候可以先不进行初始化操作。
2>>想要进行变量共享,必须使用tf.get_variable()实现,搭配命名空间,以及reuse关键字的使用,就可以实现变量的共享;而tf.Variable()每次都会生成一个新的变量。

import tensorflow as tf
with tf.variable_scope("foo"):
    v = tf.get_variable("v",[1],initializer=tf.constant_initializer(1.0))
    print(v.name)

with tf.variable_scope("la"):
    with tf.variable_scope("bar"):
        v1 = tf.get_variable("v",[1])
        print(v1.name);
        with tf.variable_scope("b"):
            v2=tf.get_variable("c",[1])
            print(v2.name)
with tf.variable_scope(""):
    v2 = tf.get_variable("foo/c", [1])
    print(v2.name)

输出结果:

foo/v:0
la/bar/v:0
la/bar/b/c:0
foo/c:0

例子如下:
1正常情况下构建多个变量

# # 方式一
# def my_func(x):
#     w1 = tf.Variable(tf.random_normal([1]))[0]
#     b1 = tf.Variable(tf.random_normal([1]))[0]
#     r1 = w1 * x + b1
#
#     w2 = tf.Variable(tf.random_normal([1]))[0]
#     b2 = tf.Variable(tf.random_normal([1]))[0]
#     r2 = w2 * r1 + b2
#
#     return r1, w1, b1, r2, w2, b2
#
#
# # 下面两行代码还是属于图的构建
# x = tf.constant(3, dtype=tf.float32)
# r = my_func(x)
#
# with tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) as sess:
#     # 初始化
#     tf.global_variables_initializer().run()
#     # 执行结果
#     print(sess.run(r))

2变量作用域下定义多个变量

# 方式二
def my_func(x):
    # initializer:初始化器
    # w = tf.Variable(tf.random_normal([1]), name='w')[0]
    # b = tf.Variable(tf.random_normal([1]), name='b')[0]
    w = tf.get_variable(name='w', shape=[1], initializer=tf.random_normal_initializer())[0]
    b = tf.get_variable(name='b', shape=[1], initializer=tf.random_normal_initializer())[0]
    r = w * x + b

    return r, w, b


def func(x):
    with tf.variable_scope('op1', reuse=tf.AUTO_REUSE):
        r1 = my_func(x)
    with tf.variable_scope('op2', reuse=tf.AUTO_REUSE):
        r2 = my_func(r1[0])
    return r1, r2


# 下面两行代码还是属于图的构建
x1 = tf.constant(3, dtype=tf.float32, name='x1')
x2 = tf.constant(4, dtype=tf.float32, name='x2')
with tf.variable_scope('func1'):
    r1 = func(x1)
with tf.variable_scope('func2'):
    r2 = func(x2)

with tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) as sess:
    # 初始化
    tf.global_variables_initializer().run()
    # 执行结果
    print(sess.run([r1, r2]))

TensorFlow可视化

TensorFlow提供了一套可视化工具:TensorBoard,在通过pip安装TensorFlow的情况 下,默认也会安装TensorBoard。通过TensorBoard可以展示TensorFlow的图像、绘制 图像生成的定量指标以及附加数据等信息。可视化的界面如下:



1 生成时间文件
TensorBoard通过读取TensorFlow的事件文件来运行,TensorFlow的事件文件 包括了在TensorFlow运行中涉及到的主要数据,比如:scalar、image、audio、 histogram和graph等。
通过tf.summary相关API,将数据添加summary中,然后在Session中执行这些 操作得到一个序列化Summary protobuf对象,然后使用FileWriter对象将汇总 的序列数据写入到磁盘,然后使用tensorboard命令进行图标展示。
2.在命令行窗口中输入:C:\anaconda\Scripts>tensorboard --logdir C:\result
路径为事件文件存放路径
3.默认访问端 口是:6006

示例

就举一个累计乘法的例子:
代码如下:

sum = tf.Variable(1,dtype=tf.int32)
i = tf.placeholder(dtype=tf.int32)
tmp_sum=sum*i
assign_op=tf.assign(sum,tmp_sum)
with tf.control_dependencies([assign_op]):
    # 如果需要执行这个代码块中的内容,必须先执行control_dependencies中给定的操作/tensor
    sum = tf.Print(sum, data=[sum, sum.read_value()], message='sum:')
x_inint_op=tf.global_variables_initializer()
tf.summary.scalar("sum",sum)
tf.summary.scalar("i",i)

with tf.Session(config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True)) as sess:
    # merge all summary
    merged_summary = tf.summary.merge_all()
    # 得到输出到文件的对象
    writer = tf.summary.FileWriter('./result', sess.graph)
    sess.run(x_inint_op)
    for j in range(1,6):
        # sess.run(assign_op,feed_dict={i:j})
        summary,r_x = sess.run([merged_summary,sum],feed_dict={i:j})
        writer.add_summary(summary, j)
    print(r_x)

可视化运行结果如下:


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容