引入了field的概念,核心目标在于,很多时候没有必要衡量任意两个小特征的关系,而只需要衡量小特征和每个field之间的关系,这样能一定程度降低稀疏性,提升隐向量的实际含义和泛化能力,隐向量的个数确实大大缩小,但是field的个数却也有关,因此不好说谁的复杂度高了,和实际问题有关,可以说的是,其实在FFM作者的实验中,FFM的提升相比FM并不多。
----------------------
你对FFM的理解不是很合理, 实际上FFM用更多的参数去学习更精细的特征交互, 参数量更大,复杂度更高.