考研高等代数真题分类汇编01

f(x)是有理数域上的( n \geqslant 2 )次多项式,且它在有理数域上不可约,但知f(x)的一个根的倒数也是f(x)的根,证明:f(x)的每一个根的倒数也是f(x)的根.

证明:首先设f ( x ) = a _ { n } x ^ { n } + \cdots + a _ { 1 } x + a _ { 0 } ( a _ { i } \in \mathbb{Q} , i = 0 , 1 , \cdots , n ) .
由于f(x)n次不可约的,所以a_0,a_n都非零,自然f(x)也无零根.记\mathbb{Q}上的多项式g ( x ) = x ^ { n } f \left( \frac { 1 } { x } \right) = a _ { 0 } x ^ { n } + a _ { 1 } x ^ { n - 1 } + \cdots + a _ { n } .
若复数\alpha\dfrac{1}{\alpha}均为f(x)的根,则g ( \alpha ) = \alpha ^ { n } f \left ( \frac { 1 } { \alpha } \right ) = 0 .
于是\alpha是多项式f(x),g(x)的公共复根,所以f(x),g(x)在复数域上不互素,结合互素性不随数域的扩大而改变,可知f(x),g(x)在有理数域上也不互素,而f(x)在有理数域上是不可约的,所以有f(x) \mid g(x).而结合a_0 \neq 0可知\partial ( g ( x ) ) = n ,所以必有g(x)=kf(x),其中k是一个非零常数,于是对f(x)的任一根x_0,有
g ( x _ { 0 } ) = x _ { 0 } ^ { n } f \left ( \frac { 1 } { x _ { 0 } } \right ) = k f ( x _ { 0 } ) = 0即有f \left( \dfrac { 1 } { x _ { 0 } } \right) = 0,即x_0的倒数也是f(x)的根.

满足2-\sqrt[]{3}为根的最小非零首1的有理多项式是(\qquad \qquad)

解答:( x - 2 + \sqrt { 3 } ) ( x - 2 - \sqrt { 3 } ) = ( x - 2 ) ^ { 2 } - 3 = x ^ { 2 } - 4 x + 1 .

\sqrt { 2 } + i为根的次数最小的有理系数多项式为(\qquad \qquad)

解答:首先构造( x - \sqrt { 2 } - i ) ( x - \sqrt { 2 } + i ) = ( x - \sqrt { 2 } ) ^ { 2 } + 1 = x ^ { 2 } + 3 - 2 \sqrt { 2 } x .

再构造( x ^ { 2 } + 3 - 2 \sqrt { 2 } x ) ( x ^ { 2 } + 3 + 2 \sqrt { 2 } x ) = ( x ^ { 2 } + 3 ) ^ { 2 } - 8 x ^ { 2 } = x ^ { 4 } - 2 x ^ { 2 } + 9 .

所以以\sqrt { 2 } + i为根的次数最小的所有有理系数多项式为a ( x ^ { 4 } - 2 x ^ { 2 } + 9 ) ,其中a \in \mathbb{Q} , a \neq 0 .

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容